SCT-20 Series

Signal Conditioning Transmitter/Indicator

Technical Manual

An ISO 9001 registered company © Rice Lake Weighing Systems. All rights reserved.

Rice Lake Weighing Systems[®] is a registered trademark of Rice Lake Weighing Systems.

All other brand or product names within this publication are trademarks or registered trademarks of their respective companies.

All information contained within this publication is, to the best of our knowledge, complete and accurate at the time of publication. Rice Lake Weighing Systems reserves the right to make changes to the technology, features, specifications and design of the equipment without notice.

The most current version of this publication, software, firmware and all other product updates can be found on our website:

www.ricelake.com

Contents

1.0	Intro	duction				
	1.1	Safety.				
	1.2	Equipme	ent Recommendations			
	1.3		g Instrument Installation			
		1.3.1	Load Cell Installation			
	1.4	Load Ce	lls3			
		1.4.1	Load Cell Input Test (Quick Access)			
		1.4.2	Load Cell Testing			
	1.5		ivity			
	1.6		s of the SCT Weight Transmitter			
	1.7		al Connections			
	1.8		nctions			
	1.9	-	ctions			
	1.10	Instrume	ent Commissioning			
2.0	Conf	figuratio	on			
	2.1	-	enu			
	۷.۱	2.1.1	Calibration			
		2.1.1	Theoretical Calibration			
		2.1.2	Maximum Capacity (NASS)			
		2.1.4	Zero Setting			
		2.1.5	Zero Value Manual Entry			
		2.1.6	Weight (Span) Calibration (With Test Weights)			
		2.1.7	Setting Units of Measure			
		2.1.8	Display Coefficient			
	2.2		n The Weight			
	2.3		rameters			
	2.4		ommunication Settings			
		2.4.1	RS-485 Serial Communication			
	2.5	SCT-20	DeviceNet™ Settings			
	2.6		Output			
		2.6.1	Soldered Jumper			
		2.6.2	Analog Output Type Scale Corrections			
	2.7	PROFIB	US Settings			
	2.8	SCT-20	EtherNet/IP™ Settings			
	2.9	SCT-20	Ethernet TCP/IP Settings			
	2.10		And Inputs Configuration			
	2.11	Test	2 ^t			
	2.12		s Programming			
	2.13	Reserve	d For The Installer			
		2.13.1	Menu Locking			
		2.13.2	Menu Unlocking			
		2.13.3	Temporary Menu Unlocking			
		2.13.4	Default Scale			
		2.13.5	Program Selection - Reverse			
		2.13.6	Program Selection - Not Legal:			
		2.13.7	Keypad Or Display Locking			

Technical training seminars are available through Rice Lake Weighing Systems. Course descriptions and dates can be viewed at **www.ricelake.com/training** or obtained by calling 715-234-9171 and asking for the training department.

SCT-20 Series

3.0	Oper	Operation			
	3.1	Semi-automatic Tare (Net/Gross)	28		
	3.2	Preset Tare (Subtractive Tare Device)			
	3.3	Semi-automatic Zero (Weight Zero-setting For Small Variations)	28		
	3.4	Peak 2			
	3.5	Alarms	29		
	3.6	SCT-20 DeviceNet	30		
	3.7	PROFIBUS			
	3.8				
		3.8.1 Instrument Setup	36		
		3.8.2 Single Port EtherNet/IP Interface	37		
		3.8.3 Dual Port EtherNet/IP Interface	37		
	3.9	SCT-20 Ethernet TCP/IP	41		
	3.10	Modbus/TCP	43		
	3.11	Modbus-RTU Protocol	43		
	3.12 ASCII Bidirectional Protocol		49		
	3.13	3 Fast Continuous Transmission Protocol			
	3.14	14 Continuous Transmission Protocol			
	3.15	15 Interface to Remote Display			
	3.16	Communication Examples	55		
<i>4</i> ∩	Sner	rifications	58		

Rice Lake continually offers web-based video training on a growing selection of product-related topics at no cost. Visit www.ricelake.com/webinars

1.0 Introduction

Manuals are available for viewing and/or downloading from the Rice Lake Weighing Systems website at www.ricelake.com/manuals

Warranty information can be found on the website at www.ricelake.com/warranties

1.1 Safety

Safety Signal Definitions:

Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury. Includes hazards that are exposed when quards are removed.

Indicates a potentially hazardous situation that, if not avoided, could result in serious injury or death. Includes hazards that are exposed when guards are removed.

Indicates a potentially hazardous situation that, if not avoided, could result in minor or moderate injury.

Indicates information about procedures that, if not observed, could result in damage to equipment or corruption to and loss of data.

General Safety

Do not operate or work on this equipment unless this manual has been read and all instructions are understood. Failure to follow the instructions or heed the warnings could result in injury or death. Contact any Rice Lake Weighing Systems dealer for replacement manuals.

Failure to heed could result in serious injury or death.

There are no user serviceable parts. Refer to qualified service personnel for service.

The unit has no power switch, to completely remove D/C power from the unit, disconnect the D/C power cable from the main socket.

For pluggable equipment the socket outlet must be installed near the equipment and be easily accessible.

Always disconnect from main power before performing any work on the device.

Do not allow minors (children) or inexperienced persons to operate this unit.

Do not operate without all shields and guards in place.

Do not use for purposes other then weighing applications.

Do not place fingers into slots or possible pinch points.

Do not use this product if any of the components are cracked.

Do not make alterations or modifications to the unit.

Do not remove or obscure warning labels.

Do not use near water.

1.2 Equipment Recommendations

IMPORTANT

Failure to follow the installation recommendations is considered a misuse of the equipment.

To Avoid Equipment Damage

- Keep away from heat sources and direct sunlight.
- Protect the instrument from rain.
- Do not wash, dip in water or spill liquid on the instrument.
- Do not use solvents to clean the instrument.
- Do not install in areas subject to explosion hazard.

1.3 Weighing Instrument Installation

The terminals to be connected to ground, as indicated on the SCT Weight Transmitter wiring guide, must have the same potential as the scale structure ground. If unable to ensure this condition, connect a ground wire between the SCT Weight Transmitter and the scale structure.

The load cell cable must be run separately to the SCT Weight Transmitter input and not share a conduit with other cables. A shielded connection must be continuous without a splice.

Use RC filters (quencharcs) on the instrument-driven solenoid valve and remote control switch coils. To avoid electrical noise in the SCT Weight Transmitter panel, use special filters or sheet metal partitions to isolate. The panel installer must provide electrical protection for the instruments (fuses, door lock switch, etc.). It is recommended to leave the equipment powered on at all times to prevent the formation of condensation.

Maximum Cable Lengths:

- RS-485: 1000 meters with AWG24, shielded and twisted cables
- RS-232: 15 meters for baud rates up to 19200

1.3.1 Load Cell Installation

The load cells must be placed on rigid, stable structures within 0.5% of plumb and level. It is important to use the mounting modules for load cells to compensate for misalignment of the support surfaces.

Use waterproof sheaths and joints in order to protect the load cell cables.

Mechanical Restraints

When pipes are present, the use of hoses and flexible couplings and rubber skirted joints is recommended. In the event of rigid conduit and pipes, place the pipe support or anchor bracket as far as possible from the weighed structure (at a distance at least 40 times the diameter of the pipe).

Welding

Avoid welding with the load cells already installed. If this cannot be avoided, place the welder ground clamp close to the required welding point to prevent sending current through the load cell body.

Windy Conditions - Shocks - Vibrations

The use of weigh modules is strongly recommended for all load cells to compensate for misalignment of the support surfaces. The system designer must ensure that the scale is protected against lateral shifting and tipping relating to shocks and vibration, windy conditions, seismic conditions and the stability of the support structure.

Weighed Structure Grounding

Using a 10 gauge solid or braided wire or braided grounding strap, connect the load cell upper support plate with the lower support plate, then connect all the lower plates to a single earth ground. Once installed, accumulated electrostatic charges are discharged to the ground without going through or damaging the load cells. Failure to implement a proper grounding system may not affect the operation of the weighing system; however, this does not rule out the possibility that the cells and connected SCT Weight Transmitter may become damaged in the future. Do not ground using metal parts contained in the weighed structure.

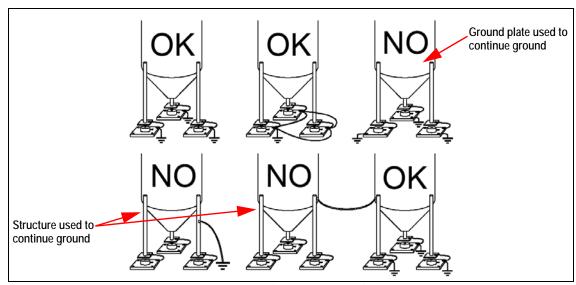


Figure 1-1. Installation Recommendations

1.4 Load Cells

1.4.1 Load Cell Input Test (Quick Access)

- 1. From the weight display, press \triangle for three seconds. $\neg U$ EEL is displayed.
- 2. Press \leftharpoonup . The response signal of the load cell is displayed, expressed in mV with four decimals.
- 3. Press **X** three times to exit test mode.

1.4.2 Load Cell Testing

Load Cell Resistance Measurement (Use A Digital Multimeter)

- Disconnect the load cells from the instrument and check that there is no moisture in the load cell junction box caused by condensation or water infiltration. If so, drain the system or replace it if necessary.
- The value between the positive signal wire and the negative signal wire must be equal or similar to the one indicated in the load cell data sheet (output resistance).
- The value between the positive excitation wire and the negative excitation wire must be equal or similar to the one
 indicated in the load cell data sheet (input resistance).
- The insulation value between the shield and any other load cell wire and between any other load cell wire and the body of the load cell must be higher than 20 Mohm (megohms).

Load Cell Voltage Measurement (Use A Digital Multimeter)

- Remove the weight of the scale from the load cell to be tested.
- Make sure that the excitation wire of the load cell connected to the instrument is 5 Vdc +/- 3 percent.
- Measure the millivolt signal between the positive and the negative signal wires by directly connecting them to the multimeter. Make sure it reads between 0 and 0.5 mV.
- Apply load to the load cell and make sure that there is a signal increment.

IMPORTANT

If one of the above conditions is not met, please contact Rice Lake Weighing Systems Customer Support for assistance.

1.5 Connectivity

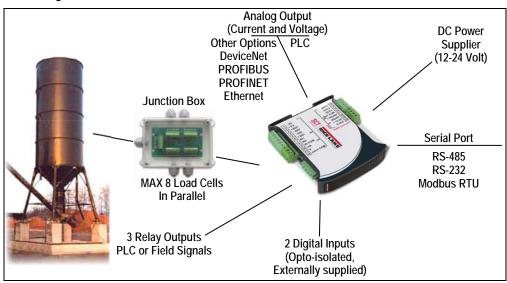


Figure 1-2. Connectivity

1.6 Features of the SCT Weight Transmitter

- Weight indicator and transmitter for Omega/DIN rail mounting suitable for back panel; space saving vertical shape.
- Six-digit semi alphanumeric display (18 mm h), 7 segment.
- Four-key keyboard. Dimensions: 25 x 115 x 120 mm.
- Displays the gross weight; with an external contact capable of remote zeroing and gross/net switching.
- · Peak weight function.
- Analog Output Option Transmits the gross or net weight via opto-isolated analog output 16 bit, current 0-20 mA, 4-20 mA or voltage 0-10V, 0-5V (±0V / ±5V by closing a soldered in jumper).

The **DeviceNet™ Option** has a DeviceNet DP V0 Source port that allows the device to exchange the main system parameters with a DeviceNet primary.

The **PROFIBUS Option** has a PROFIBUS-DP V0 Source port that allows the device to exchange the main system parameters with a PROFIBUS primary.

The **PROFINET-IO** Dual Port Option allows exchange of the weight and the main parameters with a Profinet-IO controller.

The **Ethernet Option** has an EtherNet/IP[™] device port that allows the device to exchange the main system parameters with an EtherNet/IP scanner.

The **Modbus/TCP Option** has a Modbus/TCP device port that allows the device to exchange the main system parameters with a Modbus/TCP primary.

The SCT Weight Transmitter transmits the gross or net weight via RS-485 serial port, by means of protocols:

- · Modbus RTU
- ASCII bidirectional protocol
- Continuous transmission

1.7 Electrical Connections

Basic Information

- It is recommended that the negative side of the power supply be grounded.
- It is possible to power up to eight 350 ohm load cells or sixteen 700 ohm load cells.
- For 4-wire load cells, make a jumper between EX- and REF- and between EX+ and REF+.
- Connect terminal 0 VDC to the RS-485 common when interfacing to A/C powered equipment so that there is an optoisolated RS-485 connection.
- In the event of an RS-485 network with several devices, it is recommended to activate the 120 ohm termination resistance on the two devices located at the ends of the network. See Section 2.4.1 on page 18.

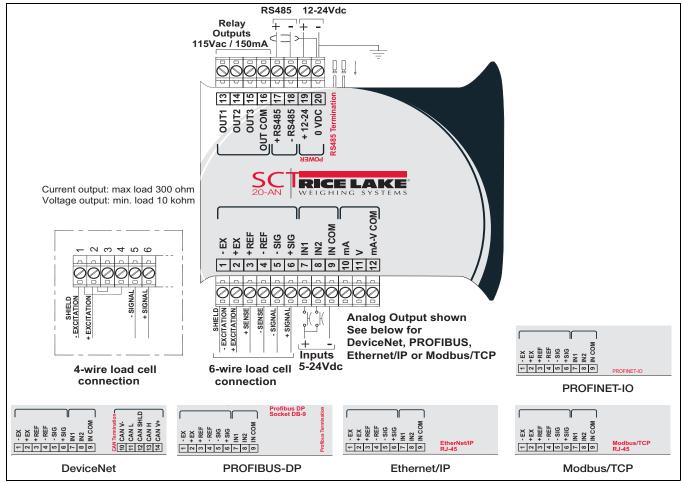


Figure 1-3. Wiring Diagram

Three outputs: configurable setpoints or remote output management via protocol.

Two inputs: default of SEMI-AUTOMATIC ZERO input 1; NET/GROSS input 2. See Section 2.10 on page 24.

1.8 LED Functions

Figure 1-4. Display

LED	Main Function	Secondary Function *		
NET	Net weight LED	None		
→0←	Zero LED (deviation from zero not more than +/- 0.25 divisions)	LED lit: output 3 closed		
	Stability LED	LED lit: output 2 closed		
kg	Unit of measure: kg	LED lit: output 1 closed		
g	Unit of measure: g	LED lit: input 2 closed		
L Unit of measure: lb LED lit: input 1 closed				
To activate the secondary LED function, press and hold _, then press \				

Table 1-1. LED Functions

LED	Function				
DeviceNet Model LED Function					
	Blinks quickly: DeviceNet OK				
DeviceNet Status	Blinks slowly (about 0.5s): Initialization				
Devicemen Status	LED lighted: source not initialized				
	LED off: DeviceNet KO				
PRO	FIBUS Model LED Function				
DDOFIDLIC Ctatus	Blinks quickly: PROFIBUS OK				
PROFIBUS Status	Blinks slowly (about 0.5s): PROFIBUS error				
PROF	INET-IO Model LED Function				
DDOCINET CL-4	Blinks quickly: PROFINET-IO OK				
PROFINET Status	Blinks slowly (about 0.5s): PROFINET-IO error				
Ethe	EtherNet/IP Model LED Function				
Eth or Not/ID Ctatus	Blinks quickly: Ethernet OK				
EtherNet/IP Status	Blinks slowly (about 0.5s): EtherNet/IP KO				
DIAE Commenter	Off: no link				
RJ45 Connector Left side [Link LED]	Amber: 10 Mbps				
Left Side [LiffK LED]	Green: 100 Mbps				
DIAE Commenter	Off: no activity				
RJ45 Connector Right side [Activity LED]	Amber: half duplex				
Right side [Activity LED]	Green: full duplex				
Modk	Modbus/TCP Model LED Function				
Modbus/TCP Status	Blinks quickly: Modbus/TCP OK				
DIAE Commenter	Off: no link				
RJ45 Connector	Amber: 10 Mbps				
Left side [Link LED]	Green: 100 Mbps				
DIAE Connector	Off: no activity				
RJ45 Connector Right side [Activity LED]	Amber: half duplex				
INIGHT SIDE [ACTIVITY LED]	Green: full duplex				

Table 1-2. Options LED Function

1.9 Key Functions

Figure 1-5. SCT Weight Transmitter Display and Keys

KEY	Short press in weigh mode	Long press (3 sec) in weigh mode	Function within Setup Menus	
X Escape	_	Zero Setting	Escape from a parameter or return to previous menu or operation mode.	
Scroll/ Backspace	Captures Tare Gross → Net	Removes Tare Net → Gross	Move to the previous parameter in a level or scroll to the next digit in a parameter value.	
Next/ Data Entry	Save to alibi memory (if present)	mV load cell test	Move to the next parameter in a level or increment a value in a parameter.	
Enter	Setting setpoints and hysteresis	_	Move to next level of configuration or select and edit a parameter.	
and X	Enter configuration for setting general parameters (press and hold \leftarrow then press \leftthreetimes to enter setup menu).			
→ and →	Setting preset tare (press and hold			

Table 1-3. Key Definitions

The LEDs are activated in sequence to indicate that a setting and not a weight is being viewed. After pressing $\underline{\ }$ the first digit flashes and can be edited.

1.10 Instrument Commissioning

- 1. Plug power cord into an outlet to power on the indicator. The display shows in sequence:
 - 511 followed by the software code (511 5)
 - r followed by the software version (r 1. 🛛 4. 🗓 1)
 - Hป followed by the hardware code (Hป เป็น)
 - The serial number (1005 15)
- 2. Check that the display shows the weight and that there is an increase in weight when loading the load cells. If there is not, check and verify the connections and correct positioning of the load cells.
- 3. Confirm that the SCT Weight Transmitter has been theoretically calibrated, the load cell's rated data is already entered and that the plant system identification tag is present on the instrument and on the cover.

If the instrument has not been calibrated, follow the calibration instructions in Section 2.1.1 on page 10 before proceeding to next step.

- 4. Reset to zero. See Section 2.1.4 on page 12.
- 5. Check the calibration with test weights and correct the indicated weight if necessary. See Section 2.1.6 on page 13.
- 6. Set the desired output type and the full scale value.
 - Analog Output Model (Section 2.6 on page 19)
 - DeviceNet Model (Section 2.5 on page 19)
 - Ethernet Model (Section 2.8 on page 21)
 - PROFIBUS Model (Section 2.7 on page 20)
 - Modbus/TCP (Section 3.10 on page 43)
- 7. If using serial communication, set the related parameters. See Section 2.4 on page 16.
- 8. If setpoints are used, set the required weight values and the relevant parameters. See Section 2.10 on page 24 and Section 2.12 on page 26.

2.0 Configuration

2.1 Scale Menu

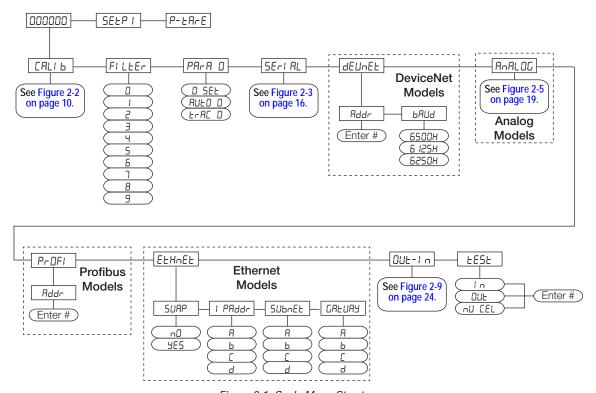


Figure 2-1. Scale Menu Structure

Parameter	Options	Description
CALI 6	F5-E60 56n5 6 d U 5 n855 26r0 nP 0 "El GHE Unl E COEFF	Calibration (Section 2.1.1 on page 10)
FILEEr	0-9 4	Filter on the weight (Section 2.2 on page 15)
PA-A O	0 5EL AULO 0 L-AC 0	Zero Parameters (Section 2.3 on page 16)
SEr! AL	r5-485 6AUd Addr HErt2 dELAY PAr1 tY StOP	Serial Communications settings (Section 2.4 on page 16)
dEUnEL	Addr bAUd	DeviceNet options for outputs and inputs configuration (Section 2.10 on page 24)

Table 2-1. Configuration Parameters

Parameter	Options	Description
AnALOG	EYPE nOdE AnA O AnA FS COr O COr FS	Analog options for outputs and inputs configuration (Section 2.10 on page 24)
Pr0FI	Addr	PROFIBUS settings (Section 2.7 on page 20)
EEHnEE	SUAP I PAddr SUbnEt GAEUAY	SCT-20 EtherNet/IP settings (Section 2.8 on page 21)
OUE-I n	I n 2 OUF 3 OUF 5 OUF 1	Outputs and Inputs configuration (Section 2.10 on page 24)
EESE	I n OUE nU-CEL	Test (Section 2.11 on page 25)

Table 2-1. Configuration Parameters (Continued)

2.1.1 Calibration

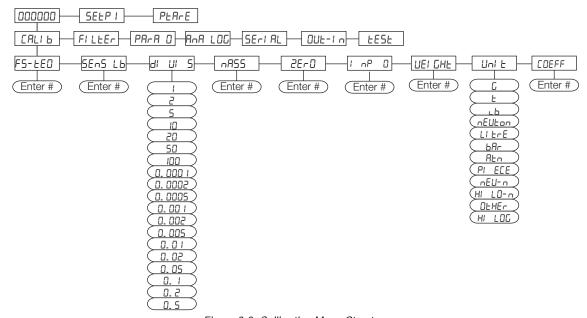


Figure 2-2. Calibration Menu Structure

Parameter	Options	Description
FS-tEO		System Full Scale – determined by multiplying one load cell capacity by the number of load cells used. Example of system full scale value calculation:
		4 cells of 1000 kg> FULL SCALE = 1000 X 4 = 4000
		NOTE: The instrument is supplied with a theoretical full scale value dEnO corresponding to 10000. To restore factory values, set 0 as full scale.

Table 2-2. Calibration Menu Parameters

Parameter	Options	Description
SEnSI b	0.50000- 7.00000 2.0000	Sensitivity – a load cell rated parameter expressed in mV/V; set the average sensitivity value indicated on the load cells Example of 4-cell system with sensitivity 2.00100, 2.00150, 2.00200, 2.00250; enter 2.00175, calculated as (2.00100 + 2.00150 + 2.00200 + 2.00250) / 4.
di Ui 5	1 2 5 10 20 50 100 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2	Division (resolution) – is the weight increment (display division size) that the scale counts by. Settings: 0.0001 and 100 with x1 x2 x5 x10 increments.
nR55	☐- max full scale	Maximum Capacity (Live Load/Product) – that can be displayed; when the weight exceeds this value by 9 divisions, dashes display, indicating overload; setting this value to 0 disables the over capacity function.
26-0	0	Zero – used to capture the deadload of the scale system; with the scale empty, the displayed value can be zeroed off; this menu can also be accessed directly from the weighing mode to compensate for zero changes or variations; Press \blacktriangle to display the accumulated deadload weight that has been zeroed off.
1 nP 0	0-999999 0	Estimated Dead Load Value – of the scale when a scale contains product that cannot be removed; the value entered is the dead load; this value is replaced if the zero function is performed
UEI GHE	0	Weight (Span) Calibration – after the theoretical calibration is complete and zero is set, the calibration can be adjusted with actual test weights by changing the displayed value in this parameter NOTE: If changes are made to the theoretical Full Scale ($FS-EED$), the Sensitivity ($SEnSI-D$) or Divisions ($GI-DI-DI-DI-DI-DI-DI-DI-DI-DI-DI-DI-DI-DI$
Uni E	G L L L L L L L L L L L L L L L L L L L	Unit of Measure – determines the unit of measure to be displayed and printed. See Section 2.1.7 on page 14 for unit descriptions. Multiplier Value – if entered, displays an alternative unit of measure if digital input is set for COEFF and is in a closed state

Table 2-2. Calibration Menu Parameters (Continued)

To calibrate the instrument, the theoretical calibration (Section 2.1.2 on page 12) must be completed first. After theoretical calibration is set, the scale can be set with actual weights (Section 2.1.6 on page 13).

2.1.2 Theoretical Calibration

This function allows load cell rated values to be set. To perform the theoretical calibration set F5- LEO, 5En51 b and df Ul 5 in sequence. See Figure 2-2 on page 10.

- 1. Press and hold ← , then press ★. EALI b is displayed.
- 2. Press ← F5- ŁEŪ is displayed. Press ← L.
- 4. Press ◀ or ▲ until 5En5 ∟b is displayed. Press ◀ ...
- Press

 ✓ or

 ▲ until desired load cell mV/V is displayed. Press

 ✓.
- 6. Press ◀ or 🛦 until 🗗 🎞 5 is displayed. Press 🛶.
- 8. Press **X** twice to exit setup menu.

By modifying the theoretical full scale, the sensitivity or divisions, the Weight (Span) Calibration is canceled and only the theoretical calibration is considered valid.

If the theoretical full scale and the recalculated full scale in Weight (Span) calibration (Section 2.1.6 on page 13) are equal, this means that the calibration currently in use is theoretical calibration; if they are different, the calibration in use is the Weight (Span) Calibration based on test weights.

By modifying the theoretical full scale, the sensitivity or divisions and all the system's parameters containing a weight value will be set to default values (setpoints, hysteresis, etc.).

2.1.3 Maximum Capacity (¬A55)

Maximum capacity is the highest weight of live load/product that can be displayed. When the weight exceeds this value by 9 divisions, the following is displayed: -----. To disable this function, set to 0.

- 1. Press and hold ← , then press ★. ERLI b is displayed.
- 2. Press ← F5- EEŪ is displayed.
- 3. Press ◀ or ▲ until ¬A55 is displayed. Press ← .
- 5. Press **X** twice to exit setup menu.

2.1.4 Zero Setting

Use Zero Setting to zero the scale after use or to compensate for variations due to environmental factors.

Perform this procedure after having set the theoretical calibration. See Section 2.1.2 on page 12.

This menu may also be accessed directly from the weight display. Press and hold **x** for three seconds.

- Press and hold ← , then press ★ . EAL! b is displayed.
- 2. Press ← F5-EED is displayed.
- 3. Press ◀ or ▲ until ²Er□ is displayed. Press ◀┛. The weight value to be set to zero is displayed and all of the LEDs are flashing.
- 4. Press ← , the weight is set to zero and the value is stored to the permanent memory.
- 5. Press **X** twice to exit set-up menu.

Press to display the accumulated deadload that has been zeroed off by the instrument, displaying the sum of all of the previous zero settings.

2.1.5 Zero Value Manual Entry

IMPORTANT

Perform this procedure only if it is not possible to zero off the scale structure, for example because it contains product that can not be unloaded.

Enter the estimated structured dead load value that would be zeroed.

- 2. Press ← F5- ŁEŪ is displayed.
- 3. Press \triangleleft or \triangle until $l \cap P \cap D$ is displayed. Press $\triangleleft \square$.
- Press

 ✓ or

 ▲ until desired dead load value is displayed. Press

 ✓.
- 5. Press **X** twice to exit set-up menu.

2.1.6 Weight (Span) Calibration (With Test Weights)

After performing the theoretical calibration (Section 2.1.2 on page 12) and the Zero setting (Section 2.1.4 on page 12), this function allows calibration to be done using test weights of known value. If adjustment is required, change the displayed value to display the test weight value.

- 1. Load the test weight onto the scale, use as high of a percentage of the maximum quantity to be weighed as possible.
- 2. Press and hold ← , then press ★. EALI b is displayed.
- 3. Press ← F5- EED is displayed.
- 5. Press —. The value of the weight currently on the system will be flashing on the display. All of the LEDs are off. (If adjustment is not required, skip to step 8.)
- 6. Adjust the value on display to match weight loaded on the scale if necessary, by pressing ◀ or ▲. The LEDs will begin scrolling.
- 7. Press \(\bigsir \), the new set weight is displayed with all the LEDs flashing.
- 9. Press **X** twice to exit set-up menu.

Example:

For a system of maximum capacity of 1000 kg and 1 kg division, two test weights are available, one 500 kg and one 300 kg. Load both weights onto the system and correct the indicated weight to 800. Now remove the 300 kg weight, the system must show 500; remove the 500 kg weight, too; the system must read zero. If this does not happen, it means that there is a mechanical problem affecting the system linearity.

IMPORTANT

Identify and correct any mechanical problems before repeating the procedure.

If theoretical full scale and recalculated full scale in Weight (Span) Calibration are equal, it means that the theoretical calibration is currently in use; otherwise, the Weight (Span) Calibration based on test weights is in use.

If the correction made changes the previous full scale for more than 20%, all the parameters with settable weight values are reset to default values.

Linearization Option On Max 5 Points:

It is possible to perform a linearization of the weight by performing the Weight (Span) Calibration (With Test Weights) with up to a maximum of five points, using five different test weights. The procedure ends by pressing \nearrow or after entering the fifth value. At this point it will no longer be possible to change the calibration value; a new Weight (Span) Calibration would need to be performed. To perform a new calibration, return to the weight display and then re-enter the calibration menu.

By pressing \triangle after having confirmed the test weight that has been set, the full scale displays the value of the maximum test weight entered and references the cell sensitivity set in the theoretical calibration ($5E_05I_0$).

2.1.7 Setting Units of Measure

- 1. Press and hold ← , then press ★. EALI b is displayed.
- 2. Press ← F5- ŁEŪ is displayed.
- 3. Press ◀ or ▲ until Unl Ł is displayed. Press ← .
- 5. Press 🗶 twice to exit set-up menu.

Unit Display	Description		
HI LOG:	Kilograms		
G=	Grams		
E=	Tons*		
Lb:	Pounds		
nE''ton	Newtons*		
LIErE	Liters*		
ьАг	Bars*		
AF0	Atmospheres*		
PI ECE	Pieces*		
nE!!EN	Newton meters*		
HI LO-N	Kilogram meters*		
OEHEr	Other generic units of measure not included on the list*		
* Indicates it is possible to set the display coefficient. To use CDEFF it is necessary to enable it, closing the CDEFF input. See Section 2.1.8.			

Table 2-3. Units of Measure

If the print function is enabled, the symbol of the selected unit of measure will be printed after the measured value.

2.1.8 Display Coefficient

By setting the coefficient, the display is changed accordingly.

If one of the inputs is set to EDEFF mode (Section 2.10 on page 24) when the input is closed the value displayed will be modified according to the coefficient. When the input is opened the standard weight display will be restored.

- 1. Press and hold ← , then press ★ to enter set-up menu, ERL1 ₺ will be displayed.
- 2. Press ← F5- ŁEŪ is displayed.
- 3. Press \blacktriangleleft or \blacktriangle until £0£FF is displayed. Press \blacktriangleleft .
- 4. Press ◀ or ▲ until desired number is displayed. Press ← ...
- 5. Press **X** twice to exit set-up menu.

Display	Definition	Display Coefficient
LЬ	pounds	The value set in £DEFF will be multiplied by the weight value currently displayed.
nEUton	newton	The value set in £0EFF will be multiplied by the weight value currently displayed.
LI ErE	litres	In EDEFF set the specific weight in kg/l, assuming that the system is calibrated in kg.
ьАг	bar	The value set in £0EFF will be multiplied by the weight value currently displayed.
REn	atmospheres	The value set in £0EFF will be multiplied by the weight value currently displayed.
PI ECE	pieces	In EDEFF set the weight of one piece.
nEU-n	newton meters	The value set in £0EFF will be multiplied by the weight value currently displayed.
HI LO-n	kilogram meters	The value set in £0EFF will be multiplied by the weight value currently displayed.
DEHEr-	other units of measure not included list	The value set in £0EFF will be multiplied by the weight value currently displayed.

Table 2-4. Display Coefficient

All other settings are expressed in weight value. To convert them to the new unit of measurement, perform a Theoretical Calibration For Other Units Of Measure on page 15 or a Weight (Span) Calibration For Other Units Of Measure on page 15 to change the system calibration. The parameter <code>Coeff</code> must remain set to 1.0000.

Theoretical Calibration For Other Units Of Measure

Set in the parameter the F. 5ERLE value divided by the conversion coefficient from kg to the new unit of measure.

Example: The 4 load cells of 1000 kg are placed under a scale for olive oil, which has a specific gravity of 0.916 kg / I. Setting the F. SERLE = (4x1000) / 0916 = 4367, the system works in liters of olive oil. See Section 2.1.7 on page 14.

Weight (Span) Calibration For Other Units Of Measure

Load a known quantity of product litres on the scale (use as high a percentage of the maximum quantity to be weighed as possible) and enter in the parameter *UEI GHE*, the product loaded value in litres. See Section 2.1.7 on page 14.

2.2 Filter On The Weight

The filtering selection is used to eliminate environment noise, and is typically a compromise between responsiveness and stability. The lower the number, the more responsive the display will be to weight changes. The filter is used to stabilize a weight as long as the variations are smaller than the corresponding Response Time. The filter setting is dependent on the type of application and the required update rate. See Table 2-5 on page 15.

Setting the parameter allows a stable weight display to be obtained. To increase the effect (weight more stable), increase value.

- 1. Press and hold ← , then press ★. EALI b is displayed.
- 2. Press ◀ or ▲ until FI LEEr is displayed.
- 3. Press —. The currently programmed filter value is displayed.
- 4. Press ◀ or ▲ until desired filter value is displayed.
- 5. Press to accept. The current weight will then display with all LEDs scrolling and the displayed stability can be experimentally verified.
 - If the stability is not satisfactory, press **x** twice. This returns the indicator to the Ft LEEr option and the filter may be modified again until an optimum result is achieved.

 - Press X once to set the anti-peak filter.

The anti-peak filter can only be set if the instrument is connected to one load cell. When the weight is stable, the anti-peak filter removes any sudden disturbances with a maximum duration of one second.

- 6. Press ◀ or ▲ to display Ant POn or Ant POF.
- 7. Press ← to accept. FI LEEr is displayed.
- 8. Press **X** to exit setup menu.

Filter Value	Response Time [ms]	Display and Serial Port Refresh Frequency [Hz]		
0	12	300		
1	150	100		
2	260	50		
3	425	25		
4*	850	12.5		
5	1700	12.5		
6	2500	12.5		
7	4000	10		
8	6000	10		
9	7000	5		
Anti-peak	6	600		
* Indicates default value.				

Table 2-5. Filter Values

2.3 Zero Parameters

- Press and hold ← , then press ★. ERLI b is displayed.
- Press

 ✓ or

 ✓ until PA-A

 ☐ is displayed. Press

 ✓.
- 3. Press ◀ or ▲ until desired parameter is displayed. See Table 2-6.
- Press

 ✓ or

 ▲ until desired value is displayed. Press

 ✓ to accept.
- 6. Press **X** twice to exit set-up menu.

Parameter	Options	Description
O SEŁ		Maximum zero range Indicates the maximum weight value that can be zeroed off by external contact, keypad or serial protocol
AULO O		Automatically zeros the scale at power-on If the weight value is lower than the value set in this parameter, the scale will zero itself provided the weight does not exceed the value in the 0 SET parameter. To disable this function set to 0.
E-AC O	n0nE * 1-5	Zero tracking Automatically zeros the scale when within the range specified, as long as the weight is within the 0 SET parameter and the scale is at standstill for at least one second. To disable this function, set to none. Example: if the parameter d/ U/ 5 is set to 5 and E-RC D is set to 2, the weight will be automatically set to zero for variations smaller than or equal to 10 (d/ U/ 5 H E-RC D).
* Indicates de	fault value.	

Table 2-6. Zero Parameters

2.4 Serial Communication Settings

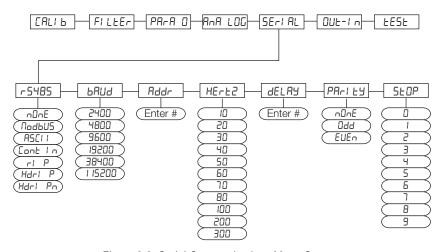


Figure 2-3. Serial Communications Menu Structure

Parameter	Options	Description
r5-485	n0nE	Disables any type of communication.
(Communication	nOdbU5	MODBUS-RTU protocol; possible addresses: from 1 to 99 (Section 3.11 on page 43)
Port)	ASCI I	ASCII bidirectional protocol; possible addresses: from 1 to 99 (Section 3.12 on page 49) NOdU6 NOdTd
	COnti n	Continuous weight transmission protocol (Section 3.13 on page 53), at the frequency set in HERTZ parameter (from 10 to 300). MOd t set: PARITY = none STOP = 1 MOd td set: PARITY = none STOP = 1
	r! P	Continuous weight transmission protocol, streams net and gross (see Section 3.14) Set: BAUD = 9600 PARITY = none STOP = 1
	Hdr I P	Continuous weight transmission protocol, streams net and gross including decimal. (Section 3.14 on page 54) Set: BAUD = 9600 PARITY = none STOP = 1
	Hdr I Pn	Continuous weight transmission protocol (see Section 3.14) Set: BAUD = 9600 PARITY = none STOP = 1 When the remote display is set to gross weight: - if the instrument displays the gross weight, the remote display shows the gross weight. - if the instrument shows the net weight the remote display shows the net weight alternated with the message <i>net</i>
PUR	2400 4800 9600** 19200 38400 115200	Transmission speed.
Addr	1-99 1*	Instruments address
HErt2	10Hz**	Maximum Transmission Frequency – set when the EDnE! n transmission protocol is selected.
	20Hz 30Hz	Max setting with min 2400 baud rate
	40Hz 50Hz 60Hz	Max setting with min 4800 baud rate
	70Hz 80Hz	Max setting with min 9600 baud rate
	100Hz 200Hz 300Hz	Max setting with min 19200 baud rate Max setting with min 38400 baud rate Max setting with min 38400 baud rate
dELAA	0-200 msec	Max setting with min 38400 baud rate Delay in milliseconds which elapses before the instrument replies
PAr LY	nOnE** EUEn Odd	parity none even parity odd parity
SEOP	1**	Stop bit
* Indicates default		I .

Table 2-7. Serial Communications Menu Parameters

2.4.1 RS-485 Serial Communication

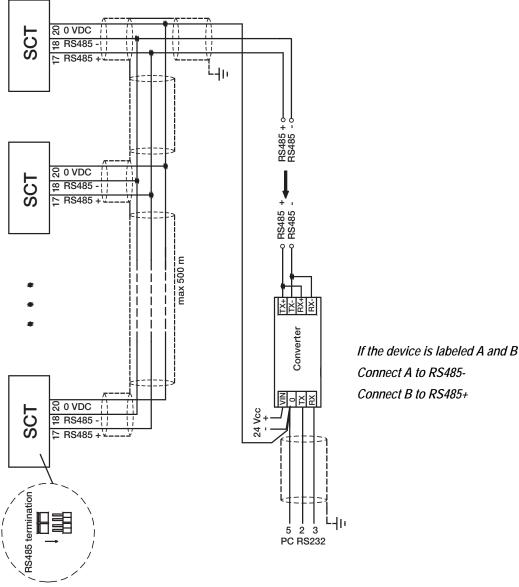


Figure 2-4. RS-485 Serial Communications

If the RS-485 network exceeds 100 meters in length or a baud rate over 9600 is used, close the two jumpers, called RS-485 termination, to activate two 120 ohm terminating resistors between the '+' and '-' terminals of the line, on the terminal strip of the furthest instrument. Should there be different instruments or converters, refer to the specific manuals to determine whether it is necessary to connect the above-mentioned resistors.

Direct Connection Between RS-485 And RS-232 Without Converter

Since a two-wire RS-485 output may be used directly on the RS-232 input of a PC or remote display, it is possible to implement instrument connection to an RS-232 port in the following manner:

Instrument	RS-232
RS-485 -	RXD
RS-485 +	GND

Table 2-8. Connection Between RS-485 and RS-232

This type of connection allows a SINGLE instrument to be used in a ONE WAY mode.

2.5 SCT-20 DeviceNet™ Settings

- Press

 ✓ or

 ▲ until dEUnEL is displayed. Press
 ✓.
- 3. Press ◀ or ▲ until desired parameter is displayed. Press ◀ ...
- 4. Press ◀ or ▲ until desired value is displayed. Press ◀ .
- 5. Press **X** twice to exit set-up menu.

Parameter	Options	Description
Addr	1-63 1*	Set instrument address in the DeviceNet [™] network.
ьяиа	6 125H 6250H 6500H *	Set instrument address in the DeviceNet [™] network.
* Indicates default value.		

Table 2-9. DeviceNet Parameters

2.6 Analog Output

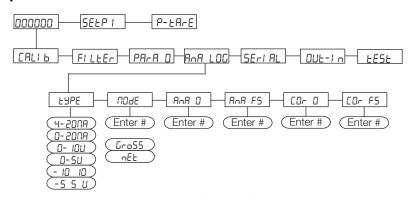


Figure 2-5. Analog Menu Structure

Parameter	Options	Description
LYPE	4-20 NA	Select the analog output type.
	0-20 NA	
	O- 10 u	
	0-5 u	
	- 10 + 10 u	See Section 2.6.1 for more information.
	-5 F5 u	See Section 2.6.1 for more information.
n0dE	Gr055	Select the mode to be tracked, gross or net. If the net function is not active, the analog output varies according to gross
	nEt	weight.
AnA D		Set the weight value for the minimum analog output value.
		NOTE: Only set a value different from zero to limit the analog output range.
		Example: for a full scale value of 10000 kg, a 4 mA signal at 5000 kg is required, and 20 mA at 10000 kg, in this case,
		instead of zero, set 5000 kg.
AnA FS		Set the weight value for the maximum analog output value; it must correspond to the value set in the PLC program
		(default: calibration full scale).
		Example: if using a 4-20 mA output and in the PLC program a 20 mA = 8000 kg is desired, set the parameter to 8000.
CO- O		Analog output correction to zero: if necessary adjust the analog output, allowing the PLC to indicate 0. The sign '-' can be
		set for the last digit on the left.
		Example: for a 4-20 mA output and a minimum analog setting, the PLC or tester reads 4.1 mA. Set the parameter to 3.9 to
		obtain 4.0 on the PLC or tester. See Analog Output Type Scale Corrections for additional information.

Table 2-10. Analog Menu Parameters

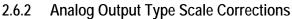

Parameter	Options	Description
COr FS		Full scale analog output correction: if necessary adjust the analog output, allowing the PLC to indicate the value set in the parameter.
		Example: for a 4-20 mA output with the analog set to full scale and the PLC or tester reads 19.9 mA, set the parameter to 20.1 to obtain 20.0 on the PLC or tester. See Analog Output Type Scale Corrections for additional information.
* Indicates defa	* Indicates default value.	

Table 2-10. Analog Menu Parameters (Continued)

2.6.1 Soldered Jumper

For the output -10 +10 V and -5 +5 V the soldered jumper (SW4) must be closed:

- Release the locking tabs, both sides, to open the enclosure.
- Locate the soldered jumper (SW4), on the circuit board.
 See Figure 2-6 on page 20.
- · Close the jumper shorting the pads with a solder bridge.

Minimum and maximum values which can be set for the zero and full scale corrections Refer to $\Box\Box\Box\Box$ and $\Box\Box\Box$ =5.

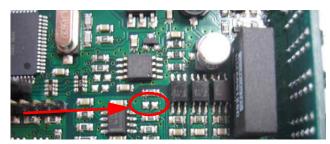


Figure 2-6. Soldered Jumper

Analog Output Type	Minimum	Maximum
0–10 V	-0.15	10.2
0-5 V	-0.15	5.5
-10 +10 V	-10.3	10.2
-5 +5 V	-5.5	5.5
0-20 mA	-0.2	22
4-20 mA	-0.2	22

Table 2-11. Analog Output Scale Corrections

The analog output may also be used in the opposite manner, where, the weight setting that corresponds to the analog zero (AnA D) may be greater than the weight set for the analog full scale (AnA FS). The analog output will increase towards full scale as the weight decreases; the analog output will decrease as the weight increases.

Example: analog output type having selected 0-10V

AnA D = 10000 AnA F5 = 0

Weight = 0 kg analog output = 10 V Weight = 5000 kg analog output = 5 V Weight = 10000 kg analog output = 0 V

2.7 PROFIBUS Settings

- 1. Press and hold and ERLI is displayed.
- 2. Press ◀ or ▲ until Pr □FI is displayed.
- 4. Press ◀ or ▲ until desired value is displayed. Press ◀ .
- 5. Press **X** twice to exit set-up menu.

Parameter	Options	Description
Addr	1-99	Set instrument address in the PROFIBUS network.

Table 2-12. PROFIBUS Parameters

2.8 SCT-20 EtherNet/IP™ Settings

- 2. Press ◀ or ▲ until EŁHnEŁ is displayed. Press ◀ ...
- 3. Press ◀ or ▲ until desired parameter is displayed. Press ◀ .
- 4. Press ◀ or ▲ until desired value is displayed. Press ◀ .
- 5. Press **X** twice to exit set-up menu.

PROFINET-IO follows the same steps for configuring IP settings.

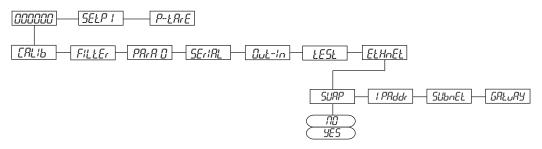


Figure 2-7. SCT-20 IP Menu Structure

Parameter	Options	Description	
SURP	n□ * Little Endian 9E5 Big Endian	Allows selection of reading/writing of bytes.	
l PAddr	A b C d 192. 8. 0. 14 1*	Set IP address in the EtherNet/IP™ network.	
SUbnEt	A b C d 255. 255. 255. 0*	Set Subnet mask	
CAFAAA	A b C d 192.8.0.111*	Set the Gateway address	
* Indicates default value.			

Table 2-13. SCT-20 IP Menu Parameters

2.9 SCT-20 Ethernet TCP/IP Settings



Figure 2-8. SCT-20 TCP/IP Menu Structure

Parameter	Options	Description	
l PAddr **	A-d 192. B. O. 14 1 *	Set IP address in the EtherNet/IP™ network.	
SUbnEt **	A- d 255. 255. 255. 0*	Set Subnet mask.	
GALUAY **	A-d 192.8.0.111*	Set the Gateway address.	
nodE	nOnE *	Disables any type of communication.	
(Comm Port)	UE65rU	Web Server	
	nOdbUS	MODBUS-RTU protocol; possible addresses: from 1 to 99 (Section 3.11 on page 43)	
	ASCI I	ASCII bidirectional protocol; possible addresses: from 1 to 99 (Section 3.12 on page 49) NOdU6- NOd td	
	COnti n	Continuous weight transmission protocol (Section 3.13 on page 53), at the frequency set in HERTZ parameter (from 10 to 300). NOd t Set: PARITY = none STOP = 1 NOd td Set: PARITY = none STOP = 1	
	r! P	Continuous weight transmission protocol, streams net and gross (Section 3.14 on page 54) Set: BAUD = 9600 PARITY = none STOP = 1	
nodE (Continued)	Hdr I P	Continuous weight transmission protocol, streams net and gross including decimal. See Section 3.14 on page 54. Set: BAUD = 9600 PARITY = none STOP = 1	
	Hdr I Pn	Continuous weight transmission protocol (Section 3.14 on page 54) Set: BAUD = 9600 PARITY = none STOP = 1 When the remote display is set to gross weight: - if the instrument displays the gross weight, the remote display shows the gross weight if the instrument shows the net weight the remote display shows the net weight alternated with the message "net"	
ьяин	2400 4800 9500 * 19200 38400 115200	Transmission speed. NOTE: The baud rate must be the same as the baud rate setting in the Serial Communications Settings. See Section 2.4 on page 16.	
Rddr	1-99 / *	Instruments address	

Table 2-14. SCT-20 TCP/IP Menu Parameters

Parameter	Options	Description
HE-F5		Maximum Transmission Frequency
		To be set when the Eant or transmission protocol is selected. See Figure 2-3 on page 16.
	10H2 *	
	20Hz	Max setting with min 2400 baud rate
	30Hz	
	40Hz	Max setting with min 4800 baud rate
	50Hz	
	60Hz	
	70Hz	
	80Hz	Max setting with min 9600 baud rate
	100Hz	Max setting with min 19200 baud rate
	200Hz	Max setting with min 38400 baud rate
	300Hz	Max setting with min 38400 baud rate
dEL AA	0-200 msec	Delay in milliseconds which elapses before the instrument replies
PAr iEY	nOnE *	parity none
	EUEn	even parity
	Odd	odd parity
5EOP	1*	Stop bit
* 1 1' 1	2	

^{*} Indicates default value.

Table 2-14. SCT-20 TCP/IP Menu Parameters (Continued)

Front Panel Configuration

- 2. Press \blacktriangleleft or \blacktriangle until $E \vdash H \cap E \vdash$ is displayed. Press \blacktriangleleft .
- 3. Press \blacktriangleleft or \blacktriangle until desired parameter is displayed. Press \blacktriangleleft .
- 4. Press ◀ or ▲ until desired value is displayed. Press ◀.
- 5. Press X twice to exit set-up menu.

^{**} These settings do not function with Firmware 1.02.00 or lower.

2.10 Outputs And Inputs Configuration

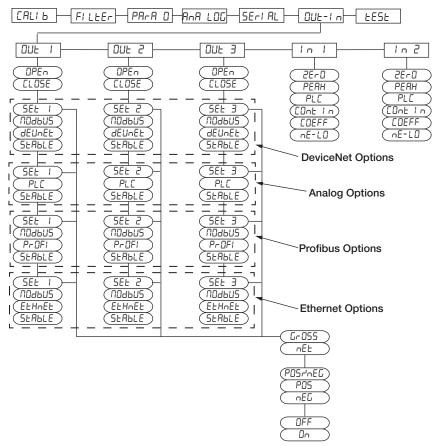


Figure 2-9. Outputs and Inputs Menu Structure

Parameter	Options	Description	
OUt 1 OUt 2	OPEn	Normally Open: the relay is de-energized and the contact is open when the weight is lower than the programmed setpoint value; it closes when the weight is higher than or equal to the programmed setpoint value.	
OUt 3	CLOSE*	Normally closed: the relay is energized and the contact is closed when the weight is lower than the programmed setpoint value; it opens when the weight is higher than or equal to the programmed setpoint value.	
OUt 1 OUt 2 OUt 3	SEt 1 SEt 2 SEt 3	Number corresponds with OUT 1, 2 or 3 The contact will switch on the basis of weight, according to setpoints. (Section 2.12 on page 26) Select: Gross (default) - the contact will switch on the basis of gross weight or Net - the contact will switch on the basis of net weight (If the net function is not active, the contact will switch on the basis of gross weight).	
	NOdbUS	The contact will not switch on the basis of weight, but is controlled by remote Modbus protocol commands. (DeviceNet™, PROFIBUS, Ethernet Only)	
	dEunEt	The contact will not switch on the basis of weight, but is controlled by DeviceNet™. (DeviceNet™ Model Only)	
	PrOFI	The contact will not switch on the basis of weight, but is controlled by PROFIBUS. (PROFIBUS Model Only)	
	EtHnEt	The contact will not switch on the basis of weight, but is controlled by Ethernet. (Ethernet Model Only)	
	PLC	The contact will not switch on the basis of weight, but is controlled by remote protocol commands. (Analog Only)	
	StAbLE	Relay switching occurs when the weight is stable.	
SEt 1	POSnEG*	Relay switching occurs for both positive and negative weight values.	
SEt 2	POS	Relay switching occurs for positive weight values only.	
SEt 3	NEG	Relay switching occurs for negative weight values only.	

Table 2-15. Outputs and Inputs Menu Parameters

Parameter	Options	Description
SEt 1	OFF*	Relay switching will not occur if the setpoint value is '0'.
SEt 2 SEt 3	On	Setpoint = '0' and nodbus=posneg, relay switching occurs when the weight is '0'; the relay will switch again when the weight is different from zero, taking hysteresis into account (both for positive and for negative weights). Setpoint = '0' and nodes=pos, relay switching occurs for a weight higher than or equal to '0', the relay will switch again for values below '0', taking hysteresis into account. Setpoint = '0' and nodes=neg, relay switching occurs for a weight lower than or equal to '0', the relay will switch again for values above '0', taking hysteresis into account.
In 1	nE-LO*	(NET/GROSS): by closing this input for less than one second, it performs a SEMI-AUTOMATIC TARE and the display
ln 2	(In 2 default)	will show the net weight. To display the gross weight again, hold the NET/GROSS input closed for three seconds.
	2Er0* (In 1 default)	By closing the input for less than one second, the weight is set to zero (Section 3.3 on page 28)
	PEAH	With the input closed the maximum weight value reached remains on display. Opening fthe input the current weight is displayed.
	PLC	Closing the input no operation is performed, the input status may however be read remotely by way of the communication protocol.
	COntIn	Closing the input for less than one second the weight is transmitted via the serial connection according to the fast continuous transmission protocol one time only (only if contin is set in the item serial).
	COEFF	When the input is closed the weight is displayed based on the set coefficient, otherwise the weight is displayed. See Section 2.1.8 on page 14.
* Indicates	default value	

Table 2-15. Outputs and Inputs Menu Parameters (Continued)

2.11 Test

- 2. Press \triangleleft or \blacktriangle until \not LE5 \not is displayed. Press \triangleleft .
- 3. Press ◀ or ▲ until desired parameter is displayed. Press ◀ .
- 4. For I ∩ and ∩U- CEL, current reading is displayed. Press ← ...
- 6. Press \blacktriangle to change the value. Press \blacktriangleleft
- 7. Press 🗶 twice to exit set-up menu.

Parameter	Options	Description
In	N/A	Input Test - for each open input 0 is displayed, 1 is displayed when the input is closed.
Out	0 * 1	Output Test - Setting 0 opens the corresponding output . Setting 1 closes the corresponding output .
ANALOG	ANALOG	Allows the analog signal to range between the minimum and the maximum values starting from the minimum.
	NA	Current output test
	UOLt	voltage output test
NU-CEL	N/A	Millivolt Test - displays the load cell response signal in mV with four decimals.
* Indicates defa	ault value.	

Table 2-16. Test Parameters

2.12 Setpoints Programming

- Press to enter setpoints and hysteresis settings.
- 2. Press ◀ or ▲ until desired setpoint or hysteresis parameter is displayed. Press ← ...
- Press

 ✓ or

 ▲ until desired value is displayed. Press
- 4. Press **X** to exit setpoints and hysteresis settings.

These values are set to zero if the calibration is changed significantly. See Section 2.1.2 on page 12 and Section 2.1.6 on page 13.

Parameter	Options	Description
SELP I SELP 2 SELP 3	D - Full Scale	Setpoint; relay switching occurs when the weight exceed the value set in this parameter. The type of switching is settable. See Section 2.10 on page 24.
HYSEE 2 HYSEE 3	D -Full Scale	Hysteresis, value to be subtracted from the setpoint to obtain contact switching for decreasing weight. For example with a setpoint at 100 and hysteresis at 10, the switching occurs at 90 for decreasing weight.

Table 2-17. Setpoints Parameters

2.13 Reserved For The Installer

2.13.1 Menu Locking

This procedure, makes it possible to block the access to any menu on the instrument.

- Press ◀ or ▲ until menu to be locked is displayed.
- 3. Press X, and simultaneously for 3 seconds, the display shows *E. ALI b.* The decimal point between the first and second letter indicates that the menu is now locked. If the operator attempts to enter this menu, access is denied and the display reads *bLDE*.

2.13.2 Menu Unlocking

- 2. Press ◀ or ▲ until menu to be unlocked is displayed.
- 3. Press A, and simultaneously for 3 seconds, the display shows ERLI b. The decimal point between the first and second letter is gone, indicating the menu is now unlocked.

2.13.3 Temporary Menu Unlocking

- 1. Press and hold ← then press ★. E. AL 1b is displayed.
- Press ◀ or ▲ until menu to be temporarily unlocked is displayed.
- 3. Press ◀ and ▲ simultaneously for 3 seconds, the display shows £ALL b. The decimal point between the first and second letter is gone, indicating the menu is now unlocked and it is possible to enter and modify all menus. By returning to the weight display, the menu lock is restored.

2.13.4 Default Scale

IMPORTANT

Operation must only be performed after contacting technical assistance

- 1. With power off, press and hold ★, then power on. Display shows Pr □□.
- 2. Press ← , bA5E is displayed.
- 3. Press ◀, PA55U is displayed.
- 5. Press ◀ and ▲ to enter 6935.
- 6. Press ← , URI Ł is displayed.
- 7. Instrument will reboot.

By confirming the displayed program, the system variables are set to default values.

2.13.5 Program Selection - Reverse

Scale capacity is displayed when scale is empty. As weight is added display counts down.

- 1. With power off, press and hold \mathbf{X} , then power on. $P \vdash DG$ is displayed.
- 2. Press ← , bA5E is displayed.
- 3. Press ◀, ¬EUE¬ is displayed.
- 4. Press ← , URI E is displayed. Instrument will reboot.

2.13.6 Program Selection - Not Legal:

Scale approval state is preset for not-legal. For other options please contact Rice Lake Weighing Systems Technical Support:

¬□ŁŁEG: Not Legal for Trade.

LEGAL: Legal for Trade (OIML)

กประ Legal for Trade, multi-interval (OIML)

- 1. With power off, press and hold X, then power on. Pr DG is displayed.
- 2. Press ← , bA5E is displayed.
- 3. Press ← , ¬□LLEG is displayed.
- 4. Press ← , URI Ł is displayed. The instrument will reboot.

Press X to quit the program without introducing any changes and without deleting any of the set variables.

If necessary, a manual for the newly set program can be requested it from Rice Lake Weighing Systems Technical Support.

2.13.7 Keypad Or Display Locking

- 1. Press 💢 immediately followed by 🛕 and hold both down for about five seconds (this operation is also possible via the MODBUS and ASCII protocols).
- 2. Press ◀ or ▲ until desired parameter is displayed. Press ← .

Parameter	Description	
FrEE	no lock	
HEY	keypad lock: if active, when key is pressed the message bL DE is displayed.	
	Keypad and Display lock: if active, the keypad is locked and the display shows the instrument model (weight is not displayed); by pressing a key the display shows bloc for three seconds.	

Table 2-18. Keypad or Display Locking Parameters

3.0 Operation

3.1 Semi-automatic Tare (Net/Gross)

The semi-automatic tare value is lost upon instrument power-off.

The semi-automatic tare operation is not available if the gross weight is zero.

- 1. To capture tare and weigh in net mode (Semi-Automatic Tare), close the Net/Gross input or press ◀ for three seconds. The instrument displays the net weight (zero) and the *NET* LED lights up.
- 2. To display the gross weight again, keep the Net/Gross input closed or press ◀ for three seconds.

This operation may be repeated by the operator to allow the loading of several products.

Press and hold \(\bigseq \) to display the gross weight temporarily. When \(\bigseq \) is released, the net weight will be displayed again.

3.2 Preset Tare (Subtractive Tare Device)

It is possible to manually set a preset tare value to be subtracted from the display value provided that the P-ER-E is less than max capacity.

- 2. Press ◀ or ▲ until desired value is displayed. Press ← ...
- 3. Press to exit P-EArE. After setting the tare value, the weight display shows the net weight (subtracting the preset tare value) and the NET LED lights up to show that a tare has been entered.

Press and hold for three seconds to display the gross weight temporarily. When is released, the net weight will be displayed again.

To delete a preset tare and return to the gross weight display:

Press and hold for three seconds or keep the Net/Gross input closed for three seconds. The preset tare value is set to zero. The *NET* LED is turned off when the gross weight is displayed once again.

If a semi-automatic tare is entered, it is not possible to access the preset tare function.

If a preset tare is entered, it is still possible to access the semiautomatic tare function. The two different types of tare are added.

All the semi-automatic tare and preset tare values will be lost when the instrument is turned off.

3.3 Semi-automatic Zero (Weight Zero-setting For Small Variations)

By closing the *Semi-Automatic Zero* input, the weight is set to zero. The zero setting will be lost when the instrument is turned off.

This function can only be used if the weight is lower than the 0 set value, otherwise the t---- alarm appears and the weight is not set to zero. See Section 2.3 on page 16.

3.4 Peak

By keeping the input closed, the maximum weight value reached remains displayed. Upon opening the input, the current weight is displayed.

To view a sudden variation peak, set the FILTER ON THE WEIGHT to 0.

3.5 Alarms

Display	Description
Er[EL	The load cell is not connected or is incorrectly connected; the load cell signal exceeds 39 mV; the conversion electronics. The A/D converter is malfunctioning. The load cell is a 4-wire and there are no jumpers between EX- and REF- and between EX+ and REF+.
Er OL	The weight display exceeds 110% of the full scale.
Er Ad	Internal instrument converter failure. Check load cell connections and, if necessary, contact Rice Lake Weighing Systems Technical Support.
	The weight exceeds the maximum weight by 9 divisions.
Er OF	The maximum displayable value was exceeded (value higher than 999999 or lower than -999999).
<i>Ł</i>	The weight is too high: zero setting is not possible.
nAH-PU	This message appears in the test weight setting, in Weight (Span) Calibration, after the fifth test weight value has been entered.
ErrOr	The value set for the parameter is beyond the permitted values; press \nearrow to quit the setting mode leaving the previous value unchanged. Example: a number of decimals is selected for full scale which exceeds the instrument's display potential; value above the maximum setting value; the weight value set in test weight verification does not match the detected mV increase.
BL OC	Lock is active on menu item, keypad or display.
nOdl 5P	It is not possible to display the number properly because it is greater than 999999 or less than -999999.

Table 3-1. Alarms

DeviceNet™ Error (DeviceNet Models Only): A problem in the DeviceNet communication is marked by a lack of flashing or a slow flashing (duration about 0.5 s) of the DeviceNet status LED.

PROFIBUS Error (PROFIBUS Models Only): A problem in the PROFIBUS communication is marked by a lack of flashing or a slow flashing (duration about 0.5 s) of the PROFIBUS status LED.

Ethernet Error (Ethernet Models Only): A problem in the Ethernet communication is marked by a slow flashing (duration about 0.5 s) of the Ethernet status LED.

Modbus/TCP Error (Modbus/TCP Models Only): A problem in the Modbus/TCP communication is marked by a slow flashing (duration about 0.5 s) of the Modbus/TCP status LED.

MODE	Er[EL	Er OL	Er Ad		Er OF	<i>Ł</i>
Bit LSB	76543210	76543210	76543210	76543210	76543210 On	The response to the zero command is
Status Register MODBUS RTU	xxxxxxxx1	xxxx1xxx	xxxxxx1x	xxxxx1xx	gross: xxx1xxxx On net: xx1xxxxx	a <i>value not valid</i> error (error code 3)
ASCII	O-F_	0-L_	O-F_	O-L_	O-F_	&aa#CR
RIP *	O-F_	0-L_	0-F_	O-L_	O-F_	_O-F_
HDRIP-N	_ERCEL	_ER_OL	_ER_AD	#####	_ER_OF	O_SET
CONTIN	_ERCEL	_ER_OL	_ER_AD	۸۸۸۸۸	_ER_OF	O_SET

Table 3-2. Serial Protocol Alarms

^{*} For RIP remote displays, if the message exceeds 5 digits the display reads -----.

In case of alarm, the relays not managed by Modbus, Modbus/TCP or DeviceNet will open.

In **Analog Models**, if an alarm becomes active the relays open and the analog outputs go to the lowest possible value according to the following table:

Range	0/20mA	4/20 mA	0/5 V	0/10 V	-10/10 V	-5/5 V
Output Value	-0.2 mA	3.5 mA	-0.5 V	-0.5 V	0 V	0 V

Table 3-3. Analog Outputs with Active Alarms

3.6 SCT-20 DeviceNet

The SCT20-DN works as a source in a DeviceNet network.

Load the included EDS file (DeviceNet_20.eds) in the DeviceNet primary's development instrument.

The data exchanged by SCT20-DN are:

Outgoing Data from SCT-20 DeviceNet (Read)	Addresses
Gross Weight [4 bytes]	0x0000-0x0003
Net Weight [4bytes]	0x0004-0x0007
Setpoint [4 bytes]	0x0008-0x000B
Status Register [2 bytes]	0x000C-0x000D
Digital Inputs Status [1 byte]	0x000E
Digital Outputs Status [1 byte]	0x000F

Input Data to SCT-20 DeviceNet (Write)	Addresses
Command Register [2 bytes]	0x0000-0x0001
Digital Outputs Command [2 bytes]	0x0002-0x0003
Setpoint [4 bytes]	0x0004-0x0007

Table 3-4. Exchanged Data SCT-20 DeviceNet

Possible Command To Send To The Command Register

Code	Description
0	No command
7	Semi-automatic tare (NET display)
8	SEMI-AUTOMATIC ZERO
9	GROSS display
21	Keypad lock
22	Keypad and display unlock
23	Keypad and display lock

Code	Description
90	Read setpoint 1
91	Read setpoint 2
92	Read setpoint 3
93	Write setpoint 1
94	Write setpoint 2
95	Write setpoint 3
99	Save data in EEPROM
9999	Reset (reserved)

Table 3-5. Commands to Command Register (DeviceNet)

To execute the same command twice consecutively, send command 0 between the first command and the following one.

Gross Weight, Net Weight:

The weight values are expressed as positive integer numbers, including decimal figures but without decimal point.

Read the Status Register to obtain information about sign and possible errors on the weight.

Setpoints:

The Setpoints are weight values expressed as positive integer numbers, including decimal figures but without decimal point.

- READING send to the Command Register the reading command of the required setpoint (e.g. 90 for reading setpoint 1) and read the content of the Setpoint register.
- WRITING write the weight value to be set in the Setpoint and send to the Command Register, the writing command of the required setpoint (e.g. 93 for writing setpoint 1).

Setpoints are stored to the RAM volatile memory and lost upon instrument power off. To save them permanently in the EEPROM memory, so that they are maintained upon the instrument power on, it is necessary to send the command 99 (Save data in EEPROM) of the Command Register.

Digital Inputs Status

Bit No.	Description
Bit 0	INPUT 1 status
Bit 1	INPUT 2 status
Bit 2	_
Bit 3	_

Bit No.	Description	
Bit 4	_	
Bit 5	_	
Bit 6	_	
Bit 7	_	

Table 3-6. Digital Inputs (DeviceNet)

Bit a 1: input high; Bit a 0: input is low

Digital Outputs Status

Bit No.	Description		
Bit 0	OUTPUT 1 status		
Bit 1	OUTPUT 2 status		
Bit 2	OUTPUT 3 status		
Bit 3	_		

Bit No.	Description	
Bit 4	_	
Bit 5		
Bit 6		
Bit 7	1	

Table 3-7. Digital Outputs (DeviceNet)

Digital Outputs Command

It allows to control the outputs status in dEUnEL mode. See Section 2.10 on page 24.

Bit No.	Description			
Bit 0	OUTPUT 1 status			
Bit 1	OUTPUT 2 status			
Bit 2	OUTPUT 3 status			
Bit 3	_			
Bit 4	_			
Bit 5	_			
Bit 6	_			
Bit 7	_			

Bit No.	Description		
Bit 8	_		
Bit 9	_		
Bit 10	_		
Bit 11	_		
Bit 12	_		
Bit 13	_		
Bit 14	_		
Bit 15	Force Output		

Table 3-8. Digital Outputs Command (DeviceNet)

Bit a 1: output is closed; Bit a 0: output is open.

Setting bit 15 to 1 on the PLC, DeviceNet takes control of all the outputs, even if they are in different modes.

Status Register

Bit No.	Description
Bit 0	Cell Error
Bit 1	A/D Converter Malfunction
Bit 2	Maximum weight exceeded by 9 divisions
Bit 3	Gross weight higher than 110% of full scale
Bit 4	Gross weight beyond 999999 or less than -999999
Bit 5	Net weight beyond 999999 or less than -999999
Bit 6	_
Bit 7	Gross weight negative sign

Bit No.	Description			
Bit 8	Net weight negative sign			
Bit 9	Peak weight negative sign			
Bit 10	Net display mode			
Bit 11	Weight stability			
Bit 12	Weight within +/-¼ of a division around ZERO			
Bit 13	_			
Bit 14	_			
Bit 15	Force Output			

Table 3-9. Status Register (DeviceNet)

3.7 PROFIBUS

- The SCT20-PB works as a PROFIBUS DP V0 source in a PROFIBUS-DP network.
- Load the included .gsd file (Profibus_20.gsd) attached to the instrument in the development system of the PROFIBUS primary.
- The available modules are:
 - **R** = the register can be read only
 - W = the register can be written only
 - R/W = the register can be both read and written

MODULE	Saving to EEPROM	N. Byte R	N. Byte W	ACCESS
GROSS WEIGHT)		4		R
NET WEIGHT		4		R
PEAK WEIGHT		4		R
SETPOINT 1	Only after command 99 of the COMMAND REGISTER	4	4	R/W
SETPOINT 2		4	4	R/W
SETPOINT 3		4	4	R/W
HYSTERESIS 1		4	4	R/W
HYSTERESIS 2		4	4	R/W
HYSTERESIS 3		4	4	R/W
Divisions and Units of measure		2		R
Visualization Coefficient		4		R
INPUTS		2		R
OUTPUTS	NO	2	2	R/W
STATUS REGISTER		2		R
COMMAND REGISTER	NO		2	W
Sample Weight for calibration	Use with command 101 of the COMMAND REGISTER	4	4	R/W

Table 3-10. PROFIBUS Modules

GROSS WEIGHT - NET WEIGHT - PEAK

The weight values are expressed as positive integer numbers, include decimal figures but without decimal point.

Read the Status Register to obtain information about sign and possible errors on the weight.

To find out the decimal figures use the division module value; *Example: the net weight is 100000 and the division is 0.001 (three decimals), the real weight value is 100.000kg.*

Setpoints - Hysteresis

The weight values are expressed as positive integer numbers, include decimal figures but without decimal point.

- To set the value to 0; write the hexadecimal value hex 80000000 to the register (the most significant bit is 1 and all the other bits are 0).
- To set them correctly consider the module Division value; E.g. to set a set-point to 100kg and the verification division value is 0.001, set the set-point value to 100000 (remove the decimal points from the value that would be 100.000 with decimals).
- If from PLC, a values is set out of the permitted interval (from 0 (not included) to full scale) the value is ignored and the bit 13 (Writing error) rises in the Status Register.

Setpoints and Hysteresis are stored to the RAM volatile memory and lost upon instrument power off. To save them permanently in the EEPROM memory, so that they are maintained upon the instrument power on, it is necessary to send the command 99 (Save data in EEPROM) of the Command Register.

Divisions And Units Measure Registry (40014)

This register contains the current setting of the divisions (parameter <u>dl</u> <u>Ul</u> 5) and of the units of measure (<u>Unl</u> <u>E</u> parameter). Use this register together with the coefficient registers to calculate the value displayed by the instrument.

Least significant byte L Byte (Division)		
Division value	Divisor	Decimals
0	100	0
1	50	0
2	20	0
3	10	0
4	5	0
5	2	0
6	1	0
7	0.5	1
8	0.2	1
9	0.1	1
10	0.05	2
11	0.02	2
12	0.01	2
13	0.005	3
14	0.002	3
15	0.001	3
16	0.0005	4
17	0.0002	4
18	0.0001	4

Most significant byte H Byte (Units of Measure)		
Units of measure value	Units of measure description	Utilization of the Coefficient value with the different units of measure settings compared to the gross weight detected
0	Kilograms	Does not intervene
1	Grams	Does not intervene
2	Tons	Does not intervene
3	Pounds	Does not intervene
4	Newton	Multiples
5	Liters	Divides
6	Bar	Multiples
7	Atmospheres	Multiples
8	Pieces	Divides
9	Newton Meter	Multiples
10	Kilogram Meter	Multiples
11	Other	Multiples

Table 3-11. Divisions And Units Measure Registry

Coefficient Display

The PROFIBUS register contains the value of parameter **EDEFF**, expressed as integer number, with 4 decimal figures but without decimal point.

E.g.: If **COEFF** is 1.2000, the PROFIBUS register contains 12000

Digital Inputs Status

Bit No.	Description
Bit 0	INPUT 1 status
Bit 1	INPUT 2 status
Bit 2	_
Bit 3	_
Bit 4	_
Bit 5	_
Bit 6	_
Bit 7	_

Bit No.	Description
Bit 8	_
Bit 9	
Bit 10	_
Bit 11	_
Bit 12	_
Bit 13	_
Bit 14	_
Bit 15	_

Table 3-12. Digital Input Status (PROFIBUS)

Bit a 1: input high; Bit a 0: input is low

Digital Outputs Command

It allows control to the outputs status in PrOFI. See Section 2.10 on page 24.

Bit No.	Description
Bit 0	OUTPUT 1 status
Bit 1	OUTPUT 2 status
Bit 2	OUTPUT 3 status
Bit 3	_
Bit 4	_
Bit 5	_
Bit 6	_
Bit 7	_

Bit No.	Description
Bit 8	_
Bit 9	_
Bit 10	_
Bit 11	_
Bit 12	_
Bit 13	_
Bit 14	_
Bit 15	Force Output

Table 3-13. Digital Outputs Command (PROFIBUS)

Bit a 1: output is closed; Bit a 0: output is open.

Setting bit 15 to 1 on the PLC, PROFIBUS takes control of all the outputs, even if they are in different modes.

Status Register

Bit No.	Description
Bit 0	Cell Error
Bit 1	A/D Converter Malfunction
Bit 2	Maximum weight exceeded by 9 divisions
Bit 3	Gross weight higher than 110% of full scale
Bit 4	Gross weight beyond 999999 or less than -999999
Bit 5	Net weight beyond 999999 or less than -999999
Bit 6	_
Bit 7	Gross weight negative sign
Bit 8	Net weight negative sign
Bit 9	Peak weight negative sign
Bit 10	Net display mode
Bit 11	Weight stability
Bit 12	Weight within +/-¼ of a division around ZERO
Bit 13	Writing error
Bit 14	_
Bit 15	_

Table 3-14. Status Register (PROFIBUS)

Bit 13 (writing error) rises if the PLC tries to write a value out of a parameter's permitted interval. In this case the writing has no effect and the previous parameter value is maintained.

Possible Command To Send To The Command Register

Code	Description
0	No command
7	NET display
8	SEMI-AUTOMATIC ZERO
10	Reserved
11	Reserved
12	Reserved
13	Reserved
14	Reserved
15	Reserved
16	Reserved

Code	Description
17	Reserved
18	Reserved
21	Keypad lock
22	Keypad and display unlock
23	Keypad and display lock
99	Save data in EEPROM
100	Zero-setting for calibration
101	Sample weight storage for calibration
9999	Reset (reserved)

Table 3-15. Commands to Command Register (PROFIBUS)

To execute the same command twice consecutively, send command 0 between the first command and the following one

Real Calibration Commands (With Sample Weight)

The SCT20-PB calibration can be changed via PROFIBUS.

To correctly set the sample weight, the value of the division module must be taken into consideration.

Example: to set the value to 100kg and the division value is 0.001, set the register value to 100000 (remove the decimal points from the value that would be 100.000 with decimals).

To perform the edit calibration procedure:

- 1. Using the command 100 *Zero-Setting for calibration* of the command register, unload the system and ensure the display reads zero.
- 2. Place a sample weight on the scale.
- 3. Record the correct known weight value in the *Sample Weight for Calibration* register.
- 4. Send the command 101 Sample weight storage for calibration.
- 5. To verify the correct execution of the calibration command:
 - Write the sample weight value to the Sample Weight for Calibration module.
 - Write the value 0 to the *Sample Weight for calibration* module.
 - Send the command 101 Sample weight storage for calibration to the Command Register
 - The operation works correctly if the module value Sample Weight for calibration goes to zero.

See Table 3-15 on page 35 for a list of PROFIBUS commands.

Changing some instrument parameters via keyboard can take the PROFIBUS network out of the data exchange status and put the PLC in stop status; when programming the instrument the plant must be in stand-by status

3.8 SCT-20 EtherNet/IP™

The SCT20-IP works as a device in an EtherNet/IP network.

3.8.1 Instrument Setup

- Press

 ✓ or

 ▲ until EŁHnEŁ displays. Press

 ✓.
- 3. Press ◀ or ▲ to navigate through menu.
 - 5URP: select the reading/writing of the byte in LITTLE-ENDIAN or BIG-ENDIAN mode
 - 4E5: BIG ENDIAN
 - ¬Ū: LITTLE ENDIAN (default)
 - I PAddr: set instrument IP address (default: 192.8.0.141)
 - 5ป๒๓๕೬: set instrument Subnet Mask (default: 255.255.255.0)
 - มีคะบลษ: set Gateway address of Ethernet network (default: 192.8.0.111)
- 4. Press ★ until EŁHnEŁ displays to apply changes.

Load the included EDS file (Ethernet_20.eds) in the EtherNet/IP scanner's development instrument; or, open Class 1 I/O Connection with the following settings:

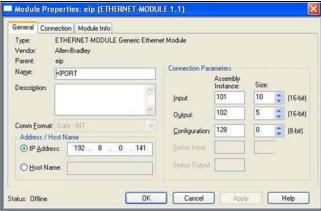


Figure 3-1. Module Properties (EtherNet/IP)

- If explicit messages are used and the PLC supports class 3 connections (with appropriate interface), insert the data shown in Figure 3-1.
- If explicit messages are used and the PLC needs data read/write messages to be constructed manually use the settings in Table 3-16. The arrays dimensions of exchanged data are the same as those reported in Section 3.8.2.

Field	Read	Write
Service	0x0E	0x10
Class	0x04	0x04
Instance	0x65	0x64
Attribute	0x03	0x03
Data	NO	Byte array to be written

Table 3-16. Manual Settings for Communication

3.8.2 Single Port EtherNet/IP Interface

The data exchanged by SCT-20 EtherNet/IP are:

Outgoing Data from SCT-20 EtherNet/IP (Read)	Addresses
Internal Status [2 bytes]	0x0000-0x0001
Gross Weight [4 bytes]	0x0002-0x0005
Net Weight [4bytes]	0x0006-0x0009
Exchange Register [4 bytes]	0x000A-0x000D
Status Register [2 bytes]	0x000E-0x000F
Digital Inputs Status [2 byte]	0x0010-0x0011
Digital Outputs Status [2 byte]	0x0012-0x0013

Table 3-17. Output Data from SCT-20 (EtherNet/IP)

Input Data to SCT-20 EtherNet/IP (Write)	Addresses
Enable Writing [2 bytes]0	0x0000-0x0001
Command Register [2 bytes]	0x0002-0x0003
Command of Digital Outputs [2 bytes]	0x0004-0x0005
Exchange Register [4 bytes]	0x0006-0x0009

Table 3-18. Input Data to SCT-20 (EtherNet/IP)

3.8.3 Dual Port EtherNet/IP Interface

Dual port interface uses a different configuration file compared to the single port, making the connection parameters different between the two outputs.

EDS File Setup

The configuration used when setting up a device with the EDS file.

Output Data from SCT-20 EtherNet/IP (Read)	Addresses	Туре
Gross Weight [4 byte]	0x0000-0x0003	Double Integer
Net Weight [4 byte] 0x0004-0x0007 Double Ir		Double Integer
Exchange Register [4 byte]	0x0008-0x000B	Double Integer
Status Register [2 byte]	0x000C-0x000D	Integer
Digital Inputs status [2 byte]	al Inputs status [2 byte] 0x000E-0x000F Integr	
Digital Outputs status [2 byte]	0x0010-0x0011	Integer

Table 3-19. EDS Output Data - Dual Port Interface (EtherNet/IP)

Input Data to SCT-20 EtherNet/IP (Write)	Addresses	Туре
Command Register [2 byte]	0x0000-0x0001	Integer
Digital Outputs Command [2 byte]	0x0002-0x0003	Integer
Exchange Register [4 byte]	0x0004-0x0007	Double Integer

Table 3-20. Input Data to SCT-20 (EtherNet/IP)

Generic EtherNet/IP Module Setup

The configuration used when setting up a device with the generic module file.

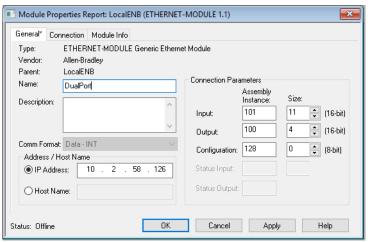


Figure 3-2. Dual Port – Generic EtherNet/IP Module Setup

Output Data from SCT-20 EtherNet/IP (Read)	Addresses	Туре
Header Information [4 bytes]	0x0000-0x0003	Double Integer
Gross Weight [4 byte]	0x0004-0x0007	Double Integer
Net Weight [4 byte]	0x0008-0x000B	Double Integer
Exchange Register [4 byte]	0x000C-0x000F	Double Integer
Status Register [2 byte]	0x0010-0x0011	Integer
Digital Inputs status [2 byte]	0x0012-0x0013	Integer
Digital Outputs status [2 byte]	0x0014-0x0015	Integer

Table 3-21. Generic Module Output Data – Dual Port Interface (EtherNet/IP)

Generic EtherNet/IP module setup uses the same input data as EDS file setup. See Table 3-20.

Possible Command To Send To The Command Register

Code	Description	Code	Description
0	No command	7	Semi-Automatic Tare enabling (net weight displaying)
8	Semi-Automatic Zero	9	Semi-Automatic Tare disabling (gross weight displaying)
20		21	Keypad lock
22	Keypad and display unlock	23	Keypad and display lock
86		87	Preset Tare reading*
88	Preset Tare writing*	89	
90	Setpoint 1 reading*	91	Setpoint 2 reading*
92	Setpoint 3 reading*	93	Setpoint 1 writing*
94	Setpoint 2 writing*	95	Setpoint 3 writing*
98		99	Save data in EEPROM
100	Tare Weight Zero Setting for calibration	101	Sample weight storage for calibration
102	Sample Weight reading*	103	Sample Weight writing*
130	Preset Tare enabling	131	

Table 3-22. Commands to Command Register (EtherNet/IP)

To execute the same command twice consecutively, send command 0 between the first command and the following one.

Internal Status

When the internal status is not 0 there is an internal error, so data from SCT-20 EtherNet/IP are not reliable.

When the internal status is 0 data from SCT-20 EtherNet/IP are reliable.

Write Enable

Write 0x0000 in the Write Enable register to ensure that no data are written to SCT-20 EtherNet/IP.

Write 0xFFFF in the *Write Enable* register to enable that data are written to SCT-20 EtherNet/IP.

Gross weight, Net weight:

The weight values are expressed as positive integer numbers; they include decimal figures without a decimal point.

Read the *Status Register* to obtain informations about sign and possible errors on the weight.

Setpoints:

The setpoints are weight values expressed as positive integer numbers; they include decimal figures without a decimal point.

- Reading: send to the Command Register the reading command of the required setpoint and read the content of the Setpoint Register. *Example: 90 for reading setpoint 1.*
- Writing: write the weight value to be set in the setpoint and send to the Command Register the writing command of the required setpoint. *Example: 93 for writing setpoint 1.*

Setpoints are stored to the RAM volatile memory; they are lost upon instrument power off. To save them permanently in the EEPROM memory, so that they are maintained upon the instrument power on. It is necessary to send the command 99 Save data in EEPROM to the command register

Digital Inputs Status

Bit No.	Description
Bit 0	INPUT 1 status
Bit 1	INPUT 2 status
Bit 2	_
Bit 3	_

Bit No.	Description
Bit 4	_
Bit 5	
Bit 6	
Bit 7	

Table 3-23. Digital Input Status (EtherNet/IP)

Bit a 1: input high; Bit a 0: input is low

Digital Outputs Status

Bit No.	Description
Bit 0	OUTPUT 1 status
Bit 1	OUTPUT 2 status
Bit 2	OUTPUT 3 status
Bit 3	_

Bit No.	Description
Bit 4	_
Bit 5	_
Bit 6	_
Bit 7	_

Table 3-24. Digital Output Status (EtherNet/IP)

Digital Outputs Command

It allows control to the outputs status in *EEHnEE* mode. See Section 2.10 on page 24.

Bit No.	Description
Bit 0	OUTPUT status
Bit 1	OUTPUT 2 status
Bit 2	OUTPUT 3 status
Bit 3	_
Bit 4	_
Bit 5	_
Bit 6	_
Bit 7	_

Bit No.	Description
Bit 8	_
Bit 9	
Bit 10	_
Bit 11	_
Bit 12	
Bit 13	_
Bit 14	_
Bit 15	Force Outputs

Table 3-25. Digital Outputs Command (EtherNet/IP)

Bit a 1: output is closed; Bit a 0: output is open.

Setting bit 15 to 1 on the PLC DeviceNet takes control of all the outputs, even if they are in different modes.

Status Register

Bit No.	Description
Bit 0	Cell Error
Bit 1	A/D Converter Malfunction
Bit 2	Maximum weight exceeded by 9 divisions
Bit 3	Gross weight higher than 110% of full scale
Bit 4	Gross weight beyond 999999 or less than -999999
Bit 5	Net weight beyond 999999 or less than -999999
Bit 6	
Bit 7	Gross weight negative sign
Bit 8	Net weight negative sign
Bit 9	Peak weight negative sign
Bit 10	Net display mode
Bit 11	Weight stability
Bit 12	Weight within ±¼ of a division around ZERO
Bit 13	
Bit 14	
Bit 15	

Table 3-26. Status Register (EtherNet/IP)

3.9 SCT-20 Ethernet TCP/IP

To configure Ethernet TCP/IP port of SCT-20 TCP/IP, the Lantronix DeviceInstaller must be installed on a Windows PC.

- 1. Connect the PC and SCT-20 TCP/IP through a LAN, point-to-point or with hub/switch.
- 2. Run the Lantronix Device Installer file (DevInst.exe) on the CD.
- 3. Select Search and the application will find the SCT-20 TCP/IP in the LAN.

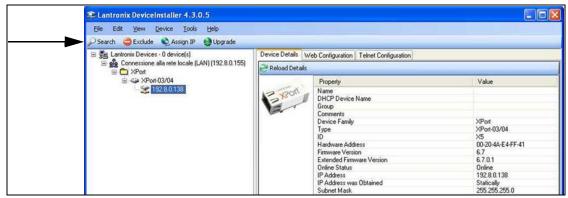


Figure 3-3. Find SCT-20 TCP/IP in LAN

- Select the device and then select the Telnet Configuration.
- 5. Select the **Connect** button and then press **Enter**.

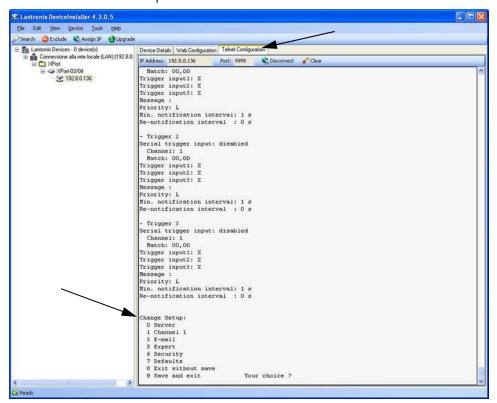


Figure 3-4. Telnet Configuration

- 6. Press **0** Server and change only the IP Address fields. It is strongly recommended to set a fixed IP Address. Do not change any other parameters. Press **Enter** to confirm.
- Press 1 Channel to change the serial baud rate of the Ethernet Module to match the baud rate set in SCT-20 TCP/IP Protocol Selection (default 9600). Do not change any other parameters. Press Enter to confirm.

To connect to the SCT-20 TCP/IP using a socket (for example Winsock), the port to use is 10001.

To connect to SCT-20 TCP/IP via Ethernet TCP/IP through a serial virtual port (virtual COM port of a PC) perform the following steps.

- Run TCPIP.exe found on the CD
- 2. Enter the IP Address of SCT-20 TCP/IP and press **ACTIVATE**. This activates the socket connection.
- 3. Type the ASCII command (without CR) and press **SEND**. The answer displays in the Received box.

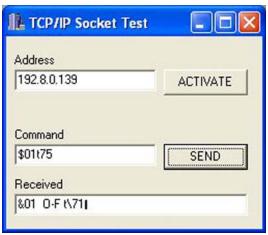


Figure 3-5. TCP/IP Socket Test Screen

Figure 3-6. TCP/IP Socket Test Screen (Examples)

Use the added COM to communicate with SCT-20 TCP/IP using the selected protocol.

SCT-20 TCP/IP.exe is included on the CD for testing commands and it only works with Port 10001.

Do not include the <CR> with the command.

Supports the same commands as ASCII. See Section 3.12 on page 49.

Protocol Selection

To select the protocol to use on the Ethernet port, choose one of the following:

- ELhaEL Mode lines of the list below (none, Modbus, ASCII, Contin, Rip, Hdripn, Hdripn). See Section 2.9 on page 22.
- I PAddr, 5UbnEt, GALUAY are not yet used, IPAddress, Subnet Mask or Gatway address cannot be assigned directly through the keyboard: use configuration SW Lantronix DeviceInstaller.
- มEb5กม protocol is not yet implemented.

3.10 Modbus/TCP

The SCT20-MB works as a source in a Modbus/TCP network. The instrument is configured with DHCP as the default. the IP Address can be automatically assigned by DHCP, or manually via Telnet. To manually set the IP address via PC, type "telnet <ipaddress> 9999" and press Enter to confirm. The following screen displays:

```
_ 🗆 ×
 🚚 Telnet 192.8.0.159
Press Enter to go into Setup Mode
Model: Device Server Plus+! (Firmware Code:XA)
Modbus/TCP to RTU Bridge Setup
1) Network/IP Settings:
                                                    - 0.0.0.0/DHCP/BOOTP/AutoIP
        IP Address .....
        Default Gateway .....
                                                           not set
                                                          not set
       Netmask .
2) Serial & Mode Settings:
CP1
CP2
                        Not Used
Not Used
CP3 ..... Not Used
CP3 ..... Not Used
4) Advanced Modbus Protocol settings:
Slave Addr/Unit Id Source .. Modbus/TCP header
Modbus Serial Broadcasts ... Disabled (Id=0 auto-mapped to 1)
MB/TCP Exception Codes .... Yes (return 00AH and 00BH)
Char, Message Timeout ..... 00050msec, 05000msec
D)efault settings, S)ave, Q)uit without save
Select Command or parameter set (1..4) to change:
```

Figure 3-7. Modbus/TCP Set up Screen

- 1. Enter "1" to manually configure IP Address, Default Gateway Address and Netmask.
- 2. Enter "S" to save.

Modbus/TCP commands and registers of the SCT20-MB are the same as ModbusRTU protocol.

3.11 Modbus-RTU Protocol

The MODBUS-RTU protocol enables management of the reading and writing of the registers, listed in this section, according to the specifications contained in the reference document for this standard Modicon PI-MBUS-300.

To select the communication with MODBUS-RTU, see Section 2.4 on page 16.

When specifically indicated, certain data will be written directly to EEPROM type memories. This memory has a limited number of writing operations (100.000); therefore, unnecessary operations at said locations must be avoided. The instrument ensures that no writing occurs if the value to be stored is equal to the stored value.

The numerical data listed below are expressed in decimal notation, or hexadecimal notation if preceded by 0x.

Modbus-RTU Data Format

The data received and transmitted via MODBUS-RTU protocol have the following characteristics:

- 1 start bit
- · 8 data bits, least significant bit sent first
- · Instrument settable parity bit
- · Instrument settable stop bit

Modbus Supported Functions

Among the commands available in MODBUS-RTU protocol, only the commands in Table 3-27 are used to manage communication with the instruments. Other commands may not be interpreted correctly and could generate errors or system shut-downs:

Function	Description
03 (0x03)	Read Holding Register (Programmable Register Reading)
16 (0x10)	Preset Multiple Registers (Multiple Register Writing)

Table 3-27. Modbus-RTU Supported Functions

The interrogation frequency is linked with the preset communication rate (the SCT20-MB will stand by for at least 3 bytes before beginning to calculate a possible response to the query). The <code>JELRY</code> ?parameter (Section 2.4 on page 16) allows for a further delay in the instrument response, and this directly influences the number of possible queries in the unit of time.

For additional information on this protocol, refer to the general technical specification PI_MBUS_300. In general, the query and response to and from a source instrument are organized as follows.

Function 3: Read Holding Registers (Programmable Register Reading)

Query				
Address	Function	Add. Reg. 1	No. register	2 bytes
А	0x03	0x0000	0x0002	CRC

Table 3-28. Programmable Register Reading (Modbus-RTU)

Tot. bytes = 8

RESPONSE					
Address Function No. bytes Register1 Register 2 2 bytes					2 bytes
А	0x03	0x04	0x0064	0x00C8	CRC

Table 3-29. Programmable Register Reading Response (Modbus-RTU)

Tot. bytes = 3+2*No. registers+2

in which:

No. registers= number of Modbus register to be read, starting from the Address 1° register No. bytes = number of data bytes to follow

Function 16: Preset Multiple Registers (Multiple Register Writing)

QUERY							
Address	Address Function Add. reg. 1 No. reg. No. bytes Val. reg.1 Val. reg.2 2 bytes						
А	0x10	0x0000	0x0002	0x04	0x0000	0x0000	CRC

Table 3-30. Multiple Register Writing Query (Modbus-RTU)

Tot. bytes = 7+2*No. registers+2

RESPONSE				
Address	Function	Add. Reg. 1	No. register	2 bytes
А	0x10	0x0000	0x0002	CRC

Table 3-31. Multiple Register Writing Response (Modbus-RTU)

Tot. bytes = 8

in which:

No. registers= number of Modbus register to be read, starting from the Address 1° register;

No. bytes = number of data bytes to follow;

Val. reg. 1 = register contents beginning from the first.

The response contains the number of records changed starting from the Address 1° register.

Communication Error Management

The communication strings are controlled by CRC (Cyclical Redundancy Check).

In the event of a communication error, the source will not respond with any string. The primary must allow for a time-out before response reception. If no response is received, it infers that a communication error has occurred.

In the event of a string received correctly but not executable, the source responds with an Exceptional Response. The function field is transmitted with the msb at 1.

EXCEPTIONAL RESPONSE				
Address Function Code 2 bytes				
А	Funct + 0x80	See Table 3-33	CRC	

Table 3-32. Exceptional Response (Modbus-RTU)

CODE	DESCRIPTION
1	ILLEGAL FUNCTION (Function not valid or not supported)
2	ILLEGAL DATA ADDRESS (The specified data address is not available)
3	ILLEGAL DATA VALUE (The data received have no valid value)

Table 3-33. Exceptional Response Codes (Modbus-RTU)

List Of Usable Registers

The MODBUS-RTU protocol implemented on this instrument can manage a maximum of 32 registers read and written in a single query or response.

R = the register can be read only

W = the register can be written only

R/W = the register can be both read and written

H = high half of the DOUBLE WORD forming the number

L = low half of the DOUBLE WORD forming the number

REGISTER	DESCRIPTION	Saving to EEPROM	ACCESS
40001	Firmware version	_	R
40002	Type of instrument	_	R
40003	Year of Production	_	R
40004	Serial Number	_	R
40005	Active program	_	R
40006	COMMAND REGISTER	NO	W
40007	STATUS REGISTER	_	R
40008	GROSS WEIGHT H	_	R
40009	GROSS WEIGHT L	_	R
40010	NET WEIGHT H	_	R
40011	NET WEIGHT L	_	R
40012	PEAK WEIGHT H	_	RR
40013	PEAK WEIGHT L	_	R
40014	Divisions and Units of measure)	_	R
40015	Coefficient H	_	R
40016	Coefficient L	_	R

Table 3-34. Usable Registers (Modbus-RTU)

REGISTER	DESCRIPTION	Saving to EEPROM	ACCESS
40017	Setpoint 1 H	Only after command '9" of the	R/W
40018	Setpoint 1 L	COMMAND REGISTER	R/W
40019	Setpoint 2 H		R/W
40020	Setpoint 2 L		R/W
40021	Setpoint 3 H		R/W
40022	Setpoint 3 L		R/W
40023	Hysteresis 1 H		R/W
40024	Hysteresis 1 L		R/W
40025	Hysteresis 2 H	R/W	_
40026	Hysteresis 2 L	R/W	_
40027	Hysteresis 3 H	R/W	_
40028	Hysteresis 3 L	R/W	_
40029	Inputs	_	R
40030	OutputS	NO	R/W
40037	Test weight for calibration H	Use with command '101' of the	R/W
40038	Test weight for calibration L	COMMAND REGISTER	R/W
40043	Weight value corresponding to ZERO of the analog output H	Ony after command '99' of the Command Register. (Analog Models Only)	R/W
40044	Weight value corresponding to ZERO of the analog output L		R/W
40045	Weight value corresponding to Full Scale of the analog output H		R/W
40046	Weight value corresponding to Full Scale of the analog output L		R/W

Table 3-34. Usable Registers (Modbus-RTU) (Continued)

At the time of writing, the setpoints, hysteresis values are saved to the RAM and will be lost upon the next power-off; to store them permanently to the EEPROM so that they are maintained at power-on, the '99' command of the Command Register must be sent.

Weight (Span) Calibration Commands (With Test Weights)

The SCT20-MB calibration can be changed via Modbus. To perform this procedure, the system must be unloaded and the weight value display reset to zero with the command 100 of the Command Register. A load must then be placed on the system and the correct weight value must be sent to the registers 40037-40038. To save this value, send the control 101 from the Command Register. If the operation is completed successfully, the two test weight registers are set to zero.

Analog Output Setting (Analog Models Only)

Write the weight in the registers 40045 (Weight value corresponding to the Full Scale of analog output H) and 40046 (Weight value corresponding to the Full Scale of analog output L), or write the weight in the registers 40043 (Weight value corresponding to the ZERO of the analog output H) and 40044 (Weight value corresponding to the ZERO of the analog output L). After writing the value, send the command 99 from the Command Register to save it to EEPROM memory.

	Status Register (40007)					
Bit 0	Cell Error	Bit 8	Net weight negative sign			
Bit 1	AD Convertor Malfunction	Bit 9	Peak weight negative sign			
Bit 2	Maximum weight exceeded by 9 divisions	Bit 10	Net display mode			
Bit 3	Gross weight higher than 110% of full scale	Bit 11	Weight stability			
Bit 4	Gross weight beyond 999999 or less than -999999	Bit 12	Weight within +/-¼ of a division around ZERO			
Bit 5	Net weight beyond 999999 or less than -999999	Bit 13	_			
Bit 6	_	Bit 14	_			
Bit 7	Gross weight negative sign	Bit 15	_			

Table 3-35. Status Register (40007) (Analog Model)

INPUT	INPUTS REGISTER (40029) (Read Only)						
Bit 0	INPUT 1 Status						
Bit 1	INPUT 2 Status						
Bit 2	_						
Bit 3	_						
Bit 4	_						
Bit 5	_						
Bit 6	_						
Bit 7	_						
Bit 8	_						
Bit 9	_						
Bit 10	_						
Bit 11	_						
Bit 12	_						
Bit 13	_						
Bit 14	_						
Bit 15	_						

OUTPUTS REGISTER (40030) (Read and Write)					
Bit 0	OUTPUT 1 Status				
Bit 1	OUTPUT 2 Status				
Bit 2	OUTPUT 3 Status				
Bit 3	_				
Bit 4	_				
Bit 5	_				
Bit 6	_				
Bit 7	_				
Bit 8	_				
Bit 9	_				
Bit 10	_				
Bit 11	_				
Bit 12	_				
Bit 13	_				
Bit 14	_				
Bit 15	_				

Table 3-36. Input and Output Registers (Analog Model)

The output status can be read at any time but can be set (written) only if the output has been set as **NOdbUS** or dEUnEL (Section 2.10 on page 24); otherwise, the outputs will be managed according to the current weight status with respect to the relevant setpoints.

Divisions And Units Measure Registry (40014)

This register contains the current settings of the divisions parameter (U = U = 0) and the units of measure parameter (U = 0). Use this register together with the U = 0 EFF registers to calculate the value displayed by the SCT20-MB.

Least significant byte L Byte (Division)					
Division value	Divisor	Decimals			
0	100	0			
1	50	0			
2	20	0			
3	10	0			
4	5	0			
5	2	0			
6	1	0			
7	0.5	1			
8	0.2	1			
9	0.1	1			
10	0.05	2			
11	0.02	2			
12	0.01	2			
13	0.005	3			
14	0.002	3			
15	0.001	3			
16	0.0005	4			
17	0.0002	4			
18	0.0001	4			

Most significant byte H Byte (Units of Measure)		
Units of measure value	Units of measure description	Utilization of the Coefficient value with the different units of measure settings compared to the gross weight detected
0	Kilograms	Does not intervene
1	Grams	Does not intervene
2	Tons	Does not intervene
3	Pounds	Does not intervene
4	Newton	Multiples
5	Litres	Divides
6	Bar	Multiples
7	Atmspheres	Multiples
8	Pieces	Divides
9	Newton Meter	Multiples
10	Kilogram Meter	Multiples
11	Other	Multiples

Table 3-37. Divisions and Units of Measure (Analog Model)

Possible Commands To Send To The Command Register (40006)

Code	Descriptions
0	No command
1	_
2	_
3	_
4	_
5	_
6	_
7	NET display
8	SEMI-AUTOMATIC ZERO
9	GROSS display
10	Reserved
11	Reserved
12	Reserved
13	Reserved
14	Reserved
15	Reserved
16	Reserved

Code	Description
17	Reserved
18	Reserved
19	_
20	_
21	Keypad lock
22	Keypad and display unlock
23	Keypad and display lock
24	
99	Save data in EEPROM
100	Zero-setting for calibration
101	Test weight storage for calibration
	_
	_
	_
9999	Reset (reserved)

Table 3-38. Commands to Command Register (Analog Model)

3.12 ASCII Bidirectional Protocol

All the sample commands use address 1. If a different address is used it will need a different Check-Sum calculated.

The instrument replies to the requests sent from a PC/PLC.

Using the <code>dELAY</code> parameter, it is possible to set a delay time for the instrument before it transmits a response. See Section 2.4 on page 16.

The following communication modes available (Section 2.4 on page 16):

- n0dU60:
- ?nOd td:?

Data Identifiers

Data Sent	Definition
\$	Beginning of a request string (36 ASCII)
& o &&	Beginning of a response string (38 ASCII)
aa	2 characters for instrument address (48 ÷ 57 ASCII)
!	1 character to indicate the correct reception(33 ASCII
?	1 character to indicate a reception error (63 ASCII)
#	1 character to indicate an error in the command execution (23 ASCII)
ckck	2 ASCII characters for Check-Sum (page 53)
CR	1 character for string end (13 ASCII)
1	1 character for separation (92 ASCII)

Table 3-39. Data Identifiers (ASCII)

Setpoint Values Setting:

The PC transmits: \$aaxxxxxxyckckCR in which:

Data	Definition
XXXXXX	6 characters for the setpoint value (48 ? 57 ASCII)
у	A (set the value in the Setpoint 1) \$01010000A40CR
у	B (set the value in the Setpoint 2)\$01010000B42CR
у	C (set the value in the Setpoint 3) \$01010000C43CR

Table 3-40. Setpoint Value Definitions (ASCII)

Possible instrument responses:

Correct reception: &&aa!\ckckCRIncorrect reception: &&aa?\ckckCR

Setpoints Storage Into EEPROM Memory:

The setpoints value relevant to the two setpoints programmed via the PC are stored to the RAM volatile memory and lost upon instrument power off. It is necessary to send a special command to save them permanently in the EEPROM memory. Please note that the number of writes allowed in the EEPROM memory is limited (about 100000).

The PC transmits: \$aaMEMckckCR\$01MEM44CR

Possible instrument responses:

Correct reception: &&aa!\ckckCR
 Incorrect reception: &&aa?\ckckCR

Reading Weight, The Setpoint And The Peak (If Present) From The Pc:

The PC transmits: \$aajckckCR

Data	Definitions
j	a to read setpoint 1\$01a60CR
j	b to read setpoint 2\$01b63CR
j	c to read setpoint 3 <i>\$01c62CR</i>
j	t to read gross weight \$01t75CR
j	n to read net weight \$01n6FCR
j	p to read the gross weight peak if the ASCII parameter is set as NOdU60; if the ASCII parameter is set on NOd td the gross weight will be read.

Table 3-41. Weight, Setpoint, Peak Definitions (ASCII)

To read the points, set the F5_ŁED equal to 50000. \$01p71CR

Possible instrument responses:

- Correct reception: &aaxxxxxxj\ckckCR; in which xxxxxx = 6 value characters of the required weight
- Incorrect reception: &&aa?\ckckCR
- If the peak is not configured: &aa#CR

In the event of negative weight, the first character on the left acquires the value « - » (minus sign - ASCII 45).

In the event the weight value is under -99999, the minus sign ('-') is sent alternated with the most significant figure.

Error messages

In the event of an instrument alarm for exceeding 110% of the full scale or nine divisions above the value of the parameter $\Pi R55$, the instrument sends the string &aassO-Lst\ckck; in which: s = 1 separator character (32 ASCII – space-).

In the event of a faulty connection of the load cells or other alarm, the instrument sends & <u>aassO-Fst</u>\ckck; in which: s = 1 separator character (32 ASCII – space-).

See Section 3.5 on page 29 for more information on alarms.

Semi-Automatic Zero (Weight Zero-Setting For Small Variations)

IMPORTANT

The zero-setting will not be maintained after an instrument power-off.

The PC transmits: \$aaZEROckckCR\$01ZERO03CR

Possible instrument responses:

Correct reception: &&<u>aa!</u>\ckckCR
 Incorrect reception: &&<u>aa?</u>\ckckCR

• The current weight is over the maximum value resettable: &aa#CR

Switching From Gross Weight To Net Weight The PC transmits: \$aaNETckckCR\$01NET5ECR

Possible instrument responses:

Correct reception: &&<u>aa!\ckckCR</u>
 Incorrect reception: &&<u>aa?\ckckCR</u>

Switching From Net Weight To Gross Weight

The PC transmits: \$aaGROSSckckCR\$01GROSS5BCR

Possible instrument responses:

Correct reception: &&<u>aa!</u>\ckckCR
 Incorrect reception: &&<u>aa?</u>\ckckCR

Reading Of Decimals And Number Of Divisions

The PC transmits: \$aaDckckCR\$01D45CR

Possible instrument responses:

• Correct reception: & aaxy\ckckCR

Response Value	Definition
Х	number of decimals
У	division value
The y field acquires the following values:	
3	for division value = 1
4	for division value = 2
5	for division value = 5
6	for division value = 10
7	for division value = 20
8	for division value = 50
9	for division value = 100

Table 3-42. Decimal and Division Definitions

Incorrect reception: &&aa?\ckckCR

Tare Weight Zero Setting

The PC transmit the following ASCII string containing the zeroing command:

• \$aazckckCR\$01z7BCR; in which: z = weight zeroing command (122 ASCII)

Possible instrument responses:

Correct reception: &<u>aaxxxxxxt</u>\ckckCR

Data	Definition
XXXXXX	6 characters for the required weight value.
t	weight identification code (116 ASCII).

Table 3-43. Zeroing Command String Definition

- Incorrect reception: &&aa?\ckckCR
- If the instrument is not in gross weight displaying condition, the response is: &aa#CR

Example: Weight zero setting for instrument with address 2:

For the calibration, make sure that the scale is empty and the instrument measures a corresponding mV signal.

query: \$02z78(Cr) response: &02000000t\76(Cr)

For a correct weight zero setting the read value (response) must be 0 (in the string 000000).

The zero values are stored to the EEPROM memory. Please note that the number of writes allowed is limited (about 100000). If it is necessary to reset the weight quite often, it is recommended to perform it by PC or PLC program, keeping in mind the weight deviation respect to the zero instrument.

Weight (Span) Calibration (With Test Weights)

After having performed the Tare Weight Zero Setting, this function allows correct calibration to be done using test weights of known value and, if necessary, any deviations of the indicated value from the known value will be corrected.

Load the test weight onto the scale using as high a percentage of the maximum quantity to be weighed as possible. Otherwise make sure that the instrument measures a corresponding mV signal.

The PC sends the following ASCII string containing the calibration command:

\$aasxxxxxckckCR in which:

Data	Definition
S	calibration command (115 ASCII)
XXXXXX	6 characters for test weight value.

Table 3-44. Calibration Command String Definitions

Possible instrument responses:

Correct reception: &aaxxxxxxt\ckckCR

Data	Definition
t	gross weight identification code (116 ASCII).
XXXXXX	6 characters to indicate the current weight value.

Table 3-45. Calibration Response Definitions

Incorrect reception or full scale equal to zero: &&aa?\ckckCR

For correct calibration, the read value must be equal to test weight.

Example: Calibration for instrument with address 1 and test weight of 20000 kg:

query: \$01s02000070(Cr) response: &01020000t\77(Cr)

For correct calibration the read value will be 020000.

Keypad Lock (Access Protection To The Instrument)

The PC transmits: \$aaKEYckckCR\$01KEY56CR

Possible instrument responses:

Correct reception: &&<u>aa!</u>\ckckCR
Incorrect reception: &&<u>aa?</u>\ckckCR

Keypad Unlock

The PC transmits: \$aaFREckckCR\$01FRE50CR

Possible instrument responses:

Correct reception: &&<u>aa!</u>\ckckCR
 Incorrect reception: &&<u>aa?</u>\ckckCR

Display And Keypad Lock

The PC transmits: \$aaKDISckckCR\$01KDIS14CR

Possible instrument responses:

Correct reception: &&<u>aa!</u>\ckckCR
 Incorrect reception: &&<u>aa?</u>\ckckCR

Check-Sum Calculation

The two ASCII control characters (ckck) are the representation of a hexadecimal digit in ASCII characters. The check digit is calculated by performing the operation XOR (exclusive or) 8-bit ASCII codes of the only part of the underlined string.

The procedure to calculate the check-sum is the following:

- Consider only the string characters highlighted with underlining;
- Calculate the EXCLUSIVE OR (XOR) of the ASCII codes for the characters;

Example:

Character	Decimal ASCII Code	Hexadecimal ASCII Code	Binary ASCII Code
0	48	30	00110000
1	49	31	00110001
t	116	74	01110100
XOR =	117	75	01110101

Table 3-46. Example Check Sum Calculation (ASCII)

The result of the XOR operation expressed in hexadecimal notation is made up of 2 hexadecimal digits (numbers from 0 to 9 or letters from A to F). In this case the hexadecimal code is 0x75.

The check-sum inserted in the strings transmitted is made up of the 2 characters which represent the result of the XOR operation in hexadecimal notation (in this example the character 7 and the character 5.

3.13 Fast Continuous Transmission Protocol

This protocol allows for continuous serial output at high update frequencies. Up to 300 strings per second are transmitted (with a minimum transmission rate of 38400 baud).

The communication modes available are (Section 2.4 on page 16):

- nad L: communication compatible with TX RS-485 instruments.?
- nad Ed: communication compatible with TD RS-485 instruments.?

If $\neg \Box d \vdash$ is set, the following string is transmitted to PC/PLC: xxxxxxCRLF.:

String Character	Definition
XXXXXX	6 ASCII characters for gross weight (48 ÷ 57 ASCII)
CR	1 character of carriage return (13 ASCII)
LF	1 character of line feed (10 ASCII)

Table 3-47. nade Communication String Definitions

In the event of negative weight, the first character on the left acquires the value « - » (minus sign - ASCII 45).

In the event of error or alarm, the 6 weight characters are replaced by the messages found in Table 3-2 on page 29.

If $\neg \Box d$ $\vdash d$ is set, the following string is transmitted to PC/PLC: &TzzzzzzPzzzzzzlckckCR

Data	Definition		
&	1 character of string start (38 ASCII).		
Т	reference character for gross weight.		
Р	reference character for gross weight.		
ZZZZZZ	6 ASCII characters for gross weight (48 ? 57 ASCII).		
١	1 character of separation (92 ASCII).		

Table 3-48. ¬□dŁd Communication String Definitions

Data	Definition
	2 ASCII control characters calculated considering that the characters between $\&$ and I are excluded. The control value is obtained by carrying out the XOR (or exclusive) operation for the 8 bit ASCII codes of the characters considered. A character expressed in hexadecimal is thus obtained, with 2 digits which may acquire values from O to O and from O to O to O and O and O and O and O and O and O are a constant of O are a constant of O and O are a constant of O and O are a constant of O are a constant of O and O are a constant of O and O are a constant of O are a constant of O and O are a constant of O are a constant of O and O are a constant of O and O are a constant of O are a constant of O and O are a constant of O are a constant of O and O are a constant of
CR	1 character for string end (13 ASCII).

Table 3-48. ¬□dŁd Communication String Definitions (Continued)

In the event of negative weight, the first character on the left acquires the value « - » (minus sign - ASCII 45).

In the event of error or alarm, the 6 gross weight characters are replaced by messages. See Table 3.5 on page 29.

Fast Transmission Via External Contact: A single string can be transmitted by closing a digital input, not exceeding 1 sec. See Section 2.4 on page 16 and Section 2.10 on page 24.

3.14 Continuous Transmission Protocol

Using this protocol, the instrument transmits, in continuous mode, the weight to remote displays; the communication string is transmitted 10 times per second. The communication modes available are (Section 2.4 on page 16):

- rL P: remote display shows the net or gross weight, depending on the remote display setting.
- Hd-L P: remote display shows the net or gross weight, depending on the remote display setting.
- · HdrL Pn:

The instrument sends the following string to the remote display:

&NxxxxxxLyyyyyy\ckckCR

Data	Definition
&	1 character of string start (38 ASCII)
N	1 reference character for net weight. (78 ASCII)
XXXXXX	6 ASCII characters for net or peak weight if present (48 ÷ 57 ASCII)
L	1 reference character for gross weight (76 ASCII)
уууууу	6 ASCII characters for gross weight (48 ? 57 ASCII).
1	1 character for separation (92 ASCII)
ckck	2 ASCII control characters calculated considering that the characters between & and I are excluded The control value is obtained by carrying out the XOR (or exclusive) operation for the 8 bit ASCII codes of the characters considered. character expressed in hexadecimal is thus obtained, with 2 digits which may acquire values from O to 9 and from A to F. CKCK is the ASCII code of the two hexadecimal digits.
CR	character for string end (13 ASCII).

Table 3-49. Continuous Transmission Protocol Data Definitions

In the event of negative weight, the first character on the left acquires the value « - » (minus sign - ASCII 45).

If the protocol on Hdrl P has been set, the decimal point at the position shown on the instrument's display can also be transmitted. In this case, if the value exceeds 5 digits, only the 5 most significant digits are transmitted, while if the value is negative, no more than the 4 most significant digits are transmitted. In both cases, however, the decimal point shifts consistently with the value to display.

If Hdrl Pr has been set, in addition to what is stated in Hdrl P protocol, the instrument transmits the prompt net every 4 seconds in the gross weight field, when the instrument is in net mode. See Section 3.1 on page 28.

In case weight value is under -99999, the minus sign (-) is sent alternated with the most significant figure.

In the event of error or alarm, the 6 characters of the gross and net weight are replaced by the messages found in Table 3.5 on page 29.

3.15 Interface to Remote Display

Remote Display (Laser Light)

1. Press and hold ← , then press ★. EALI b is displayed.

2. Press ◀ or ▲ until 5E-! AL is displayed.

3. Press ← . -5485 is displayed.

4. Press ← . ¬□¬E is displayed.

5. Press \triangleleft or \triangle until $\vdash l$ $\vdash P$ is displayed. Press $\triangleleft \vdash l$.

6. Press **★** twice to exit set-up menu.

Laser Light

E CHAR = CR

LWPOS = 7

LENGTH = 19

Laser Light		SCT	
Connector	Pin	Connector	
J8 (RS-232)	3	RS-485 RX-	
	5	RS-485 RX+	

Laser Light 1550

S CHAR = SoH

LWPOS = 000008

Table 3-50. Laser Light Setup

3.16 Communication Examples

The numerical data below are expressed in hexadecimal notation with prefix h.

Example 1: Command for multiple writing of registers (hexadecimal command 16, h10)

Assuming that we wish to write the value 0 to the register 40017 and the value 2000 to the register 40018, the string to generate must be:

h01 h10 h00 h10 h00 h02 h04 h00 h00 h07 hD0 hF1 h0F

The instrument will respond with the string:

h01 h10 h00 h10 h00 h02 h40 h0D

Query Field Name	Hex
Instrument Address	h01
Function	h10
Address of the first register H	h00
Address of the first register L	h10
Number of registers to send H	h00
Number of registers to send L	h02
Byte Count	h04
Datum 1 H	h00

Response Field Name	Hex
Instrument Address	h01
Function	h10
Address of the first register H	h00
Address of the first register L	h10
Number of registers H	h00
Number of registers L	h02
CRC16 H	h40
CRC16 L	h0D

Table 3-51. Communication Example 1

Query Field Name	Hex
Datum 1 L	h00
Datum 2 H	h07
Datum 2 L	hD0
CRC16 H	hF1
CRC16 L	h0F

Response Field Name	Hex

Table 3-51. Communication Example 1 (Continued)

Example 2: Command for multiple writing of registers (hexadecimal command 16, h10).

Assuming that we wish to write the two setpoint values on the instrument, at 2000 and 3000 respectively, the string must be sent:

h01 h10 h00 h10 h00 h04 h08 h00 h00 h07 hD0 h00 h00 h0B hB8

hB0 hA2

The instrument will respond with the string:

h01 h10 h00 h10 h00 h04 hC0 h0F

Query Field Name	Hex
Instrument Address	h01
Function	h10
Address of the first register H	h00
Address of the first register L	h10
Number of registers to send H	h00
Number of registers to send L	h04
Byte Count	h08
Datum 1 H	h00
Datum 1 L	h00
Datum 2 H	h07
Datum 2 L	hD0
Datum 3 H	h00
Datum 3 L	h00
Datum 4 H	h0B
Datum 4 L	hB8
CRC16 H	hB0
CRC16 L	hA2

Response Field Name	Hex
Instrument Address	h01
Function	h10
Address of the first register H	h00
Address of the first register L	h10
Number of registers H	h00
Number of registers L	h04
CRC16 H	hC0
CRC16 L	h0F

Table 3-52. Communication Example 2

Example 3: Multiple command reading for registers (hexadecimal command 3, h03).

Assuming that we wish to read the two gross weight values (in the example 4000) and net weight values (in the example 3000), reading from address 40008 to address 40011 must be performed by sending the following string:

H01 h03 h00 h07 h00 h04 hF5 hC8

The instrument will respond with the string:

H01 h03 h08 h00 h00 hF hA0 h00 h00 h0B hB8 h12 h73

Query Field Name	Hex	Response Field Name	Hex
Instrument Address	h01	Instrument Address	h01
Function	h03	Function	h03
Instrument Address	h01	Instrument Address	h01
Function	h03	Function	h03
Address of the first register H	h00	Address of the first register H	h08
Address of the first register L	h07	Address of the first register L	h00
Number of registers to send H	h00	Datum 1 H	h00
Number of registers to send L	h04	Datum 1 L	h00
CRC16 H	hF5	Datum 2 H	h0F
CRC16 L	hC8	Datum 2 L	hA0
		Datum 3 H	h00
		Datum 3 L	h00
		Datum 4 H	h0B
		Datum 4 L	hB0
		CRC16 H	h12
		CRC16 L	h73

Table 3-53. Communication Example 3

For additional examples regarding the generation of correct control characters (CRC16) refer to the manual **Modicon PI-MBUS-300**.

Specifications 4.0

Power DC

Power Supply and Consumption (VDC) 12/24 VDC ± 10%; 5W

Max Divisions (with Measurement Range ± 10 mV = Sensitivity

2mV/V)

Operator Interface

STN backlight transmissive LCD Display

128 x 64 pixel resolution

2.36 x 1.26 in (60 x 32 mm) viewing area 0.3 in (8mm), seven segment LED

Keypad 4-key membrane panel, tactile feel

Analog Output

Opto-isolated Analog 0-20 mA; 4-20 mA (max 300 ohm; Output 0-10 VDC; 0 ÷; 0-5 VDC; ±10 VDC; ± 5 VDC (min 10 kohm)

16 bit - 65535 divisions

Enclosure

Dimensions (W x H x D) 0.98 x 4.52 x 4.72 in

(25 x 115 x 120 mm)

Communications

EtherNet/IP™ Port RJ45 10Base - T or 100Base-TX (auto-

sensing)

PROFIBUS Port:

Baud Rate up to 12 Mbit/s

Addresses 1-99

DeviceNet™ Port:

Baud Rate 125kbit/s, 250kbit/s, 500kbit/s

Addresses 1.63

Modbus/TCP Port RJ45 10Base-TX (auto-sensing)

Number of Load Cells in parallel and Supply Max 8 (350 ohm); 5 VDC/ 120 mA

Linearity/ Analog

<0.01% F.S.; <0.01% F.S./°C

Output Linearity

Thermal Drift <0.0005% F.S./°C:

<0.003% F.S./°C (Analog Only)

A/D Converter 24 bit (16.000.000 points) Measurement Range

±39 mV

±999999

Max Sensitivity of

Usable Load Cells

±7 mV/V

Max Conversions

per second

300/second

Display Range ±999999

Number of Decimals/ **Display Increments**

0-4/ x 1 x 2 x 5 x 10 x 20 x 50 x 100

Digital Filter/Readings per second

0.060-7sec/5-300 Hz (Analog,

DeviceNet™)

0.012-7 sec/5-300 Hz (Ethernet, PROFIBUS)

Relay Logic Outputs N.3 - max 115 VAC; 150 mA

Logic Inputs N.2 - opto-isolated 5 - 24 VDC PNP

Serial Ports RS-485 (RS232)

Baud Rate 2400, 4800, 9600, 19200, 38400, 115200

Environmental

Operating Temperature Storage Temperature Humidity

-4°F to 140°F (-20°C to 60°C) -22°F to 176°F (-30°C to 80°C) 85% (Non Condensing)

File Number: E151461

© Rice Lake Weighing Systems Specifications subject to change without notice. Rice Lake Weighing Systems is an ISO 9001 registered company.

230 W. Coleman St. • Rice Lake, WI 54868 • USA
U.S. 800-472-6703 • Canada/Mexico 800-321-6703 • International 715-234-9171 • Europe +31 (0)26 472 1319